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Probabilistic Automata (PA)

 Like ordinary automata,

 Can go to multiple states with diff. probs. (Rabin ‘63)
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Probabilistic Automata (PA)

 Like ordinary automata,

 Can go to multiple states with diff. probs. (Rabin ‘63)

 Formally, a PA, on alphabet Σ, 𝒜 = 𝑄, 𝑞0, 𝛿, A𝑐𝑐 , 

 𝑞0 - initial state.

 Acc ⊆ 𝑄.

 For u ∈ Σ∗, 𝛿𝑢(𝑞0, 𝐴𝑐𝑐) is the prob of reaching 𝐴𝑐𝑐 on 𝑢

 PA on Finite strings (PFA) 
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PA Example

 PA 𝒜 = 𝑄, 𝑞0, 𝛿, A𝑐𝑐 on Σ :
 𝑄 = 𝑞0, 𝑎𝑐𝑐, 𝑟𝑒𝑗

 𝑞0- the initial state

 𝐴𝑐𝑐 = {𝑎𝑐𝑐}

 Σ = {𝑎, 𝑏}

 Transitions:

 𝛿𝑎 𝑞0, 𝑞0 =
2

3
， 𝛿𝑎 𝑞0, 𝑟𝑒𝑗 =

1

3
；𝛿𝑏 𝑞0, 𝑞𝑠 =

1

3
， 𝛿𝑏 𝑞0, 𝑎𝑐𝑐 =

2

3
；

 𝛿𝑎 𝑎𝑐𝑐, 𝑎𝑐𝑐 = 1，𝛿𝑏 𝑎𝑐𝑐, 𝑎𝑐𝑐 = 1；

 𝛿𝑎 𝑟𝑒𝑗, 𝑟𝑒𝑗 = 1，𝛿𝑏 𝑟𝑒𝑗, 𝑟𝑒𝑗 = 1.

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐

b | 1/3 b | 2/3

a | 1/3

a,b | 1

a | 2/3

a,b | 1



Given PA 𝒜, and 𝑥 ∈ [0,1], 

 𝑳>𝒙 𝓐
 denotes input sequences accepted with prob> 𝑥;

 can be non-regular. (Rabin ‘63)



Given PA 𝒜, and 𝑥 ∈ [0,1], 

 𝑳>𝒙 𝓐
 denotes input sequences accepted with prob> 𝑥;

 can be non-regular. (Rabin ‘63)

 Checking 𝑳>𝒙 𝓐 ≠ ∅ is 

 undecidable for 𝑥 > 0; (Paz ‘71)

 trivially decidable for 𝑥 = 0. 



PA on Infinite Strings

 Prob Büchi Automata (PBA), Prob Muller Automata (PMA)

 For PA 𝒜 and 𝛼 ∈ Σ𝜔 ,

Prob 𝒜 accepts 𝛼 = Prob{𝒜′s accepting runs on 𝛼}



PA on Infinite Strings

 Prob Büchi Automata (PBA), Prob Muller Automata (PMA)

 For PA 𝒜 and 𝛼 ∈ Σ𝜔 ,

Prob 𝒜 accepts 𝛼 = Prob{𝒜′s accepting runs on 𝛼}

 Known results for PBA 𝒜: checking if

𝑳>𝟎 𝓐 ≠ ∅  
is undecidable (Baier et al ‘09)

is Σ2
0−complete. (C.S.V. ‘11)

𝑳>𝒙 𝓐 ≠ ∅ is Σ2
0−complete

 
𝑳=𝟏 𝓐 ≠ ∅

𝑳=𝟏 𝓐 = 𝚺𝝎
are PSPACE−complete(C.S.V. ‘11)



Hierarchical PA (HPA)

 𝑘-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, A𝑐𝑐 on alphabet Σ
 States stratified into levels 0, 1,… , 𝑘, 

 From a state at level 𝑖, on an input, 
 At most one transition goes to level 𝑖, all others go to higher levels.
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Hierarchical PA (HPA)

 𝑘-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, A𝑐𝑐 on alphabet Σ
 States stratified into levels 0, 1,… , 𝑘, 

 From a state at level 𝑖, on an input, 
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Hierarchical PA (HPA)

 𝑘-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, A𝑐𝑐 on alphabet Σ
 States stratified into levels 0, 1,… , 𝑘, 

 From a state at level 𝑖, on an input, 
 At most one transition goes to level 𝑖, all others go to higher levels.

1-HPA Not HPA
Level 0 Level 1

𝑞𝑠 𝑞2

𝑞1

b | 1/3 b | 2/3

a | 1/3
a,b | 1

a | 2/3

a,b | 1

For 1-HPA, all transitions on Level 1 are 
deterministic with prob 1.

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐
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Failure-Prone Open System

Server-end Web App

User User

User input (forms)
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Failure-Prone Open System

Fail

Server-end Web App

User User

User input (forms)

Model Failure Probabilistically, 
e.g. at state 𝑞1 on input 𝑎, 0.4 fail, 0.6 not fail



Model Checking
Failure-Prone Open System
Decide if an open concurrent system (𝑔1 ∥ 𝑔2)

under failure specification (𝑔1𝑓 ∥ 𝑔2)

satisfies an incorrectness property (𝑔1𝑝)

with low prob ≤ 𝑥
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Model Checking
Failure-Prone Open System
Decide if an open concurrent system (𝑔1 ∥ 𝑔2)

under failure specification (𝑔1𝑓 ∥ 𝑔2)

satisfies an incorrectness property (𝑔1𝑝)

with low prob ≤ 𝑥

⇔ Check if 𝑳>𝒙 𝓐 ≠ ∅

𝑔1 ∥ 𝑔2 𝑔1𝑓 ∥ 𝑔2
𝑔1𝑓 ∥ 𝑔2 ∥ 𝑔1𝑝
= 𝓐
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are all decidable in EXPTIME and are PSPACE-hard.
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Contributions (Cont.)

 Decidability
 Algorithms for 1-HPA

 Backward Alg

 Forward Alg (faster in practice)

 Tool: HPAMC – an HPA Model Checker

 For a 2-HPA 𝒜, checking if 𝐿>𝑥 𝒜 ≠ ∅ is undecidable for 𝑥 > 0.



Contributions (Cont.)

 Decidability
 Algorithms for 1-HPA

 Backward Alg

 Forward Alg (faster in practice)

 Tool: HPAMC – an HPA Model Checker

 For a 2-HPA 𝒜, checking if 𝐿>𝑥 𝒜 ≠ ∅ is undecidable for 𝑥 > 0.

 Restricted Classes

 Integer Automata - 𝐿>𝑥 𝒜 is regular.



Expressiveness Results

 Consider the 1-HPA 𝒜:

 Theorem: 𝑳
>
𝟏

𝟐

𝓐 is not regular.

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐

1 | 1/3 1 | 2/3
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0,1 | 1

0 | 2/3

0,1 | 1
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Proof

 For 𝑢 ∈ 0,1 ∗, define 𝑉𝑎𝑙 𝑢 =
1

2
− 𝛿𝑢 𝑞0, 𝐴𝑐𝑐

𝛿𝑢 𝑞0, 𝑞0
,

 𝑉𝑎𝑙 𝑢 denotes the % of the prob remaining at level 0 that needs to move to 

𝐴𝑐𝑐 to reach 
1

2
.

 𝑉𝑎𝑙 𝑢0 =
3

2
𝑉𝑎𝑙 𝑢 ; 𝑉𝑎𝑙 𝑢1 = 3𝑉𝑎𝑙 𝑢 − 2.
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Proof

 For 𝑢 ∈ 0,1 ∗, define 𝑉𝑎𝑙 𝑢 =
1

2
− 𝛿𝑢 𝑞0, 𝐴𝑐𝑐

𝛿𝑢 𝑞0, 𝑞0
,

 𝑉𝑎𝑙 𝑢 denotes the % of the prob remaining at level 0 that needs to move to 

𝐴𝑐𝑐 to reach 
1

2
.

 𝑉𝑎𝑙 𝑢0 =
3

2
𝑉𝑎𝑙 𝑢 ; 𝑉𝑎𝑙 𝑢1 = 3𝑉𝑎𝑙 𝑢 − 2.

 𝑣 ∈ 0,1 ∗ ∪ 0,1 𝜔 represents a number 𝑏𝑖𝑛 𝑣 ∈ 0,1 .

e.g. 𝑏𝑖𝑛 011 = 0 +
1

22
+

1

23
.
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𝑎𝑐𝑐
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Proof (Cont.)

 Claim: 𝛽 ∈ 0,1 𝜔 is ultimately periodic ⇒

𝐗𝜷 = {𝑽𝒂𝒍(𝜷′)|𝜷′𝐢𝐬 𝐚 𝐩𝐫𝐞𝐟𝐢𝐱 𝐨𝐟 𝜷} is finite.

 X𝛽 is infinite ⇒ 𝛽 is aperiodic ⇒ 𝑏𝑖𝑛(𝛽) is irrational.
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Proof (Cont.)

 Claim: 𝛽 ∈ 0,1 𝜔 is ultimately periodic ⇒

𝐗𝜷 = {𝑽𝒂𝒍(𝜷′)|𝜷′𝐢𝐬 𝐚 𝐩𝐫𝐞𝐟𝐢𝐱 𝐨𝐟 𝜷} is finite.

 X𝛽 is infinite ⇒ 𝛽 is aperiodic ⇒ 𝑏𝑖𝑛(𝛽) is irrational.

 We exhibit a 𝛽 s.t. X𝛽 is infinite, 

s.t. 𝐿
>
1

2

𝒜 = {𝑢 ∈ 0,1 ∗|𝑏𝑖𝑛 𝑢 > 𝑏𝑖𝑛(𝛽)}. 

 Using Rabin’s result, 𝐿
>
1

2

𝒜 is non-regular.
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𝑎𝑐𝑐
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Proof (Cont.)

 𝛽 = lim
𝑖→∞

𝛽𝑖, and

 𝛽𝑖 is constructed as below:

 𝛽0 is the empty string, thus 𝑉𝑎𝑙 𝛽0 =
1

2
;

 𝛽𝑖+1 =  
𝛽𝑖0 𝑖𝑓 𝑉𝑎𝑙 𝛽𝑖 <

2

3

𝛽𝑖1 𝑒𝑙𝑠𝑒
.
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𝑎𝑐𝑐
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Integer Automata (IA)

 A 1-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, 𝐴𝑐𝑐 on 𝛴 is an IA, if
 ∀𝑞 ∈ 𝑄0, 𝑎 ∈ Σ, 𝑟 ∈ Q1, 𝛿𝑎 𝑞, 𝑟 is an integer multiple of 𝛿𝑎 𝑞, 𝑄0 .
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Integer Automata (IA)

 A 1-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, 𝐴𝑐𝑐 on 𝛴 is an IA, if
 ∀𝑞 ∈ 𝑄0, 𝑎 ∈ Σ, 𝑟 ∈ Q1, 𝛿𝑎 𝑞, 𝑟 is an integer multiple of 𝛿𝑎 𝑞, 𝑄0 .

 Theorem: 

𝑳>𝒙 𝓐 is regular for IA 𝓐 and rational 𝒙.
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Decidability Results for 1-HPA

Given 1-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, 𝐴𝑐𝑐 and Σ, 

 let 𝑄 = 𝑛, 𝑄 = 𝑄0 ∪ 𝑄1, where 𝑄0 and 𝑄1denote level 0 and 1 states.

 A witness set 𝑊 is a subset of 𝑄 with at most one state in 𝑄0.

 𝑞𝑊 denotes the 𝑄0 state of 𝑊 if exists.

 𝑊 is “good” ~ if ∃𝑣 ∈ Σ∗ s. t. 𝑣 is accepted with prob 1 from all 𝑞 ∈ 𝑊 ∩ 𝑄1.



Decidability Results for 1-HPA

Given 1-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, 𝐴𝑐𝑐 and Σ, 

 let 𝑄 = 𝑛, 𝑄 = 𝑄0 ∪ 𝑄1, where 𝑄0 and 𝑄1denote level 0 and 1 states.

 A witness set 𝑊 is a subset of 𝑄 with at most one state in 𝑄0.

 𝑞𝑊 denotes the 𝑄0 state of 𝑊 if exists.

 𝑊 is “good” ~ if ∃𝑣 ∈ Σ∗ s. t. 𝑣 is accepted with prob 1 from all 𝑞 ∈ 𝑊 ∩ 𝑄1.

 Theorem: 𝑳>𝒙 𝓐 ≠ ∅ iff 

∃𝒖, |𝒖| ≤ 𝟒𝒓𝒏𝟖𝒏 and a good witness set 𝑯, 𝜹𝒖 𝒒𝟎, 𝑯 > 𝒙.



Proof (⇒)

 Assume 𝐿>𝑥 𝒜 ≠ ∅, 𝑠 is the shortest string in it.

 Consider 𝑠 > 2𝑛, and the run diagram:

 𝑠 = 𝑣𝑤𝑡 as shown above, and 𝑋𝑖 = 𝑋𝑗 and 𝑞𝑖 = 𝑞𝑗.


𝛿𝑤 𝑞𝑖,𝑋𝑗

𝛿𝑤 𝑞𝑖,𝑄1
> 𝛿𝑡(𝑞𝑗 , 𝐴𝑐𝑐).

 By repeating 𝑤 sufficient number of times (𝑚), we get desired 𝑢 = 𝑣𝑤𝑚.

𝑄1

𝑄0𝑞0 𝑞𝑖 𝑞𝑗
s

𝑣 = 𝑠[0: 𝑖] 𝑤 = 𝑠 𝑖 + 1: 𝑗 , 𝑗 ≤ 2𝑛 𝑡

𝑋𝑖

𝑋𝑗

𝑌𝑖



Decidability Results (Cont.)

 Theorem: Determining 𝑳>𝒙 𝓐 ≠ ∅ is in EXPTIME.

 Proof : Use last theorem and dynamic programming approaches.
 Backward Algorithm (simpler)

 Forward Algorithm (faster)



Backward Algorithm

 For 𝑖 = 1,… , 4𝑟𝑛8𝑛 and for each good witness set 𝑊,

 𝐏𝐫𝐨𝐛(𝐖, 𝐢) - the max prob of getting accepted from 𝑞𝑊 using an input of 
length at most 𝑖. 

𝑃𝑟𝑜𝑏 W, 1 = max 𝛿𝑎 𝑞W, 𝐴𝑐𝑐 ;

𝑃𝑟𝑜𝑏 W, 𝑖 + 1 = max{

𝑃𝑟𝑜𝑏 W, 𝑖 ,
𝛿𝑎 𝑞W, 𝑞𝑉 × 𝑃𝑟𝑜𝑏 𝑉, 𝑖 + 𝛿𝑎 𝑞W, 𝑉 ∩ 𝑄1

𝑝𝑜𝑠𝑡 𝑊 ∩ 𝑄1, 𝑎 ⊆ 𝑉}}.

 Check if 𝑷𝒓𝒐𝒃 𝒒𝟎 , 𝒊 > 𝒙.

𝑊 𝑉𝑸𝟏

𝑸𝟎 𝑞𝑉𝑞𝑊

𝑎 | 1

𝑎 | 1

𝑎 | ≥ 0𝑞0



Forward Algorithm

 For 𝐶 ⊆ 𝑄1 of HPA 𝒜, 𝑥 ∈ (0,1), 𝑢 ∈ Σ∗,

 𝐯𝐚𝐥(𝐂, 𝐱, 𝐮) =
x−𝛿𝑢(𝑞0,𝐶)

𝛿𝑢(𝑞0,𝑄0)
is the fraction of 𝛿𝑢(𝑞0, 𝑄0) needed in 𝐶 to 

exceed 𝑥.

𝑸𝟏

𝑸𝟎 𝑞0 𝑞𝑖

𝐶

𝒖

𝐴𝑐𝑐

𝛿𝑢(𝑞0, 𝑄0)

𝛿𝑢(𝑞0, 𝐶)

𝒖𝒖



Forward Algorithm

 Word 𝛼 is accepted with prob> 𝑥, iff 𝛼 = 𝑢𝛼′ and ∃ a good witness 
set 𝑊 s.t. 𝒗𝒂𝒍 𝑾, 𝒙, 𝒖 < 𝟎.

𝑞0

𝑸𝟏

𝑸𝟎 𝑞𝑖

W

𝒖

𝐴𝑐𝑐

𝜶′



Forward Algorithm (cont.)

 For each good witness set 𝑊 and 𝑖 ≥ 0, 𝐦𝐢𝐧𝒗𝒂𝒍 𝑾, 𝒊 is 

 the min of 𝑣𝑎𝑙 over all strings of length at most 𝑖;

 min𝑣𝑎𝑙 𝑊, 𝑖 = min 𝑣𝑎𝑙 𝑊 ∩ 𝑄1, 𝑥, 𝑢 𝑢 ≤ 𝑖 .



Forward Algorithm (cont.)

 For each good witness set 𝑊 and 𝑖 ≥ 0, 𝐦𝐢𝐧𝒗𝒂𝒍 𝑾, 𝒊 is 

 the min of 𝑣𝑎𝑙 over all strings of length at most 𝑖;

 min𝑣𝑎𝑙 𝑊, 𝑖 = min 𝑣𝑎𝑙 𝑊 ∩ 𝑄1, 𝑥, 𝑢 𝑢 ≤ 𝑖 .

 For increasing 𝑖 and each 𝑊, compute 𝐦𝐢𝐧𝒗𝒂𝒍 𝑾, 𝒊 incrementally.

 min𝑣𝑎𝑙 𝑊, 0 =  
𝑥 𝑖𝑓 𝑞0 ∈ 𝑊

+∞ 𝑒𝑙𝑠𝑒



Forward Algorithm (cont..)

For 𝑖 > 0, 𝑎 ∈ Σ, 𝑞 ∈ 𝑄0, 

𝑾𝐚,𝒒 = pre 𝑊, 𝑎 ∩ 𝑄1 ∪ {𝑞} for 𝑊.

𝐦𝐢𝐧𝒗𝒂𝒍 𝑾, 𝒊 = min {min𝑣𝑎𝑙 𝑊, 𝑖 − 1 ,

min𝑣𝑎𝑙 𝑊𝑎,𝑞 , 𝑖 − 1 − 𝛿𝑎 𝑞,𝑊 ∩ 𝑄1
𝛿𝑎 𝑞, 𝑞𝑊

𝛿𝑎 𝑞, 𝑞𝑊 > 0 }

𝑊𝑎,𝑞 𝑊𝑸𝟏

𝑸𝟎 𝑞𝑤𝑞

𝑎 | 1

𝑎 | 1

𝑎 | > 0



0 1

2

4

33

a| 3/5

a| 1/3
a| 1/6

a| 1/2
b| 1b| 1

a,b| 1

a,b| 1

a| 2/5

b| 1
a| 1

Forward Example

Witness Sets: {1,3} {0,2,3} {1,2,3}

𝒊 = 𝟎 +∞ ½ +∞

𝒊 = 𝟏 1/6 ½ 1/6

𝒊 = 𝟐 1/6 ½ 0

𝒊 = 𝟑 0 ½  -1/2

X=1/2 𝑊𝑎,1𝑊𝑎,0

𝑊𝑎,1𝑊𝑎,0



0 1

2

4

33

a| 3/5

a| 1/3
a| 1/6

a| 1/2
b| 1b| 1

a,b| 1

a,b| 1

a| 2/5

b| 1
a| 1

Forward Example

Witness 
Sets:

∅ {3} {2,3} {0} {1} {0,3} {1,3} {0,2,3} {1,2,3}

𝒊 = 𝟎 +∞ +∞ +∞ ½ +∞ ½ +∞ ½ +∞

𝒊 = 𝟏 ½ ½ ½ ½ 5/6 ½ 1/6 ½ 1/6

𝒊 = 𝟐 ½ ½ ½ ½ 5/6 ½ 1/6 ½ 0

𝒊 = 𝟑 ½  ½  ½  ½  5/6 ½  0 ½  -1/2

X=1/2

𝑊𝑏,0 𝑊𝑎,0

𝑊𝑎,0

𝑊𝑏,0

𝑊𝑏,0

𝑊𝑎,0

𝑊𝑎,0
𝑊𝑎,1

𝑊𝑎,1𝑊𝑎,0

𝑊𝑎,1𝑊𝑎,0



FWD vs. BKD

 Let 𝑛 =|states|, 𝑚 =|transitions|, 𝑤 is # of good witness sets, and 
𝑠 =|Σ|, 𝐿f and 𝐿𝑏 are the # of iterations before FWD and BKD algs
terminate respectively.

 Complexity

 FWD - 𝐎 𝐦𝐧 + 𝑳𝒇𝒎
𝟐 𝐰 vs. BKD - 𝐎( 𝑳𝒃𝐦+𝐦+ 𝒏 𝐬𝒘𝟐)

 𝐿𝑓 ≤ 𝑤 = 𝑂(2𝑛), 𝐿𝑏 ≤ 4𝑟𝑛8𝑛.

 FWD is faster than BKD in practice.



FWD vs. BKD



HPAMC: an HPA Model Checker
Architecture

HPA 
Generator

HPA 
Analyzer

PRISM-HPA 
Converter

HPA Model 
Checker

PRISM 
Compiler

Process PA,
Failure spec,
Property PA

PRISM model

HPA 
model

Is HPA?
Assign levels?
Witness sets?

𝑥



HPAMC: an HPA Model Checker

• HPA Generation

• Features
• PA model specification.

• PA model abstraction by 
synthesizing system, failure 
specification, and incorrectness 
property.



HPAMC: an HPA Model Checker

• HPA Generation from PRISM

• Features
• Compatible with popular model 

checkers like PRISM.

• Obtain PA from MDP.



HPAMC: an HPA Model Checker

• HPA Analysis and Verification

• Features
• HPA-based verification of PA 

models.

• Targeting decidability and 
robustness problems.



Undecidability Results for 2-HPA

 Theorem: Given a 2-HPA 𝓐, a rational threshold 𝒙 ∈ [𝟎, 𝟏], the 
problem of determining if 𝑳>𝒙 𝓐 ≠ ∅ is undecidable.

 Proof: By construction.
 Reduce the halting problem for counter automata.



Undecidability Results for 2-HPA



Conclusions

 For the 1st time, we identified a decidable and expressive class of PA.

 The results hold for PFA, PBA, and PMA; also for >,≥.

 Model checker for open concurrent probabilistic systems - HPAMC.

 Problem of checking 𝐿
>
1

2

𝒜 ≠ ∅ is PSPACE-hard.

 Problem of checking 𝐿>𝑥 𝒜 ≠ ∅ is undecidable for 2-HPA.



Future Work

 Identify subclasses of PA whose non-emptiness can be checked in 
poly-time.

 Extend to infinite acceptance and liveness property.

 Support temporal logic property.

 Tool refinement.



Thanks! Questions?

Automata Theoretic Approach for Model Checking Open Probabilistic Systems

A. Prasad Sistla

Joint work with Yue Ben, Rohit Chadha, Mahesh Viswanathan





Decidability Results (Cont.)

 Theorem: Determining 𝑳>𝒙 𝓐 ≠ ∅ is in EXPTIME.

 Proof : Use last theorem and a dynamic programming approach.
 Let 𝒳 be the set of witness sets U such that 𝑈 ∩ 𝑄0 ≠ ∅ and 𝑈 ∩ 𝑄1 is a good 

set, 𝒴 be the set of good witness sets; 𝒴 ⊆ 𝒳.

 𝑃𝑟𝑜𝑏 𝑈, 1 = max 𝛿𝑎 𝑞𝑈 ,𝑊 𝑎 ∈ Σ,𝑊 ∈ 𝒴, 𝑝𝑜𝑠𝑡 𝑈 ∩ 𝑄1, 𝑎 ⊆ 𝑊 ;

 𝑃𝑟𝑜𝑏 𝑈, 𝑖 + 1 = max

{𝑃𝑟𝑜𝑏 𝑈, 𝑖 } ∪

{𝛿𝑎 𝑞𝑈, 𝑞𝑉 𝑃𝑟𝑜𝑏 𝑉, 𝑖 + 𝛿𝑎 𝑞𝑈, 𝑉 ∩ 𝑄1 |

𝑎 ∈ Σ, 𝑉 ∈ 𝒳, 𝑝𝑜𝑠𝑡 𝑈 ∩ 𝑄1, 𝑎 ⊆ 𝑉}

.

 Check if 𝑃𝑟𝑜𝑏 𝑞0 , . > 𝑥.
-> Backward Alg



Forward Algorithm (cont..)

 For 𝑖 > 0, 𝑎 ∈ Σ, 𝑞 ∈ 𝑄0, 𝑾𝐚,𝒒 = pre 𝑊, 𝑎 ∩ 𝑄1 ∪ {𝑞} for each 𝑊.

 If 𝑊 ∩ 𝑄0 ≠ ∅, 𝐦𝒗𝒂𝒍 𝑾, 𝒊 = min {m𝑣𝑎𝑙 𝑊, 𝑖 − 1 ,

{
m𝑣𝑎𝑙 𝑊𝑎,𝑞,𝑖−1 −𝛿𝑎 𝑞,𝑊∩ 𝑄1

𝛿𝑎 𝑞,𝑞𝑊
|𝛿𝑎(𝑞, 𝑞𝑊) > 0}}.

 If 𝑊 ∩ 𝑄0 = ∅, 𝐦𝒗𝒂𝒍 𝑾, 𝒊 =

 
−∞ if ∃𝑊𝑎,𝑞 of 𝑊 s. t. m𝑣𝑎𝑙 𝑊𝑎,𝑞 , 𝑖 − 1 < 𝛿𝑎 𝑞,𝑊 ∩ 𝑄1
m𝑣𝑎𝑙 𝑊, 𝑖 − 1 𝑒𝑙𝑠𝑒

𝑊𝑎,𝑞 𝑊𝑸𝟏

𝑸𝟎 𝑞𝑤𝑞

𝑎
Pr=1

𝑎
Pr>0

𝑊𝑎,𝑞 𝑊𝑸𝟏

𝑸𝟎 𝑞

𝑎
Pr=1

𝑎
Pr>0



Forward Algorithm (cont..)

For 𝑖 > 0, 𝑎 ∈ Σ, 𝑞 ∈ 𝑄0, 𝑾𝐚,𝒒 = pre 𝑊, 𝑎 ∩ 𝑄1 ∪ {𝑞} for each 𝑊.

If 𝑊 ∩ 𝑄0 ≠ ∅, 𝐦𝒗𝒂𝒍 𝑾, 𝒊 = min {m𝑣𝑎𝑙 𝑊, 𝑖 − 1 ,

m𝑣𝑎𝑙 𝑊𝑎,𝑞 , 𝑖 − 1 − 𝛿𝑎 𝑞,𝑊 ∩ 𝑄1
𝛿𝑎 𝑞, 𝑞𝑊

𝛿𝑎 𝑞, 𝑞𝑊 > 0 }

𝑊𝑎,𝑞 𝑊𝑸𝟏

𝑸𝟎 𝑞𝑤𝑞

𝑎 | 1

𝑎 | 1

𝑎 | > 0



Forward Algorithm (cont…)

For 𝑖 > 0, 𝑎 ∈ Σ, 𝑞 ∈ 𝑄0, 𝑾𝐚,𝒒 = pre 𝑊, 𝑎 ∩ 𝑄1 ∪ {𝑞} for each 𝑊.

If 𝑊 ∩ 𝑄0 = ∅, 𝐦𝒗𝒂𝒍 𝑾, 𝒊 =

 
−∞ if ∃𝑊𝑎,𝑞 of 𝑊 s. t. m𝑣𝑎𝑙 𝑊𝑎,𝑞 , 𝑖 − 1 < 𝛿𝑎 𝑞,𝑊 ∩ 𝑄1
m𝑣𝑎𝑙 𝑊, 𝑖 − 1 𝑒𝑙𝑠𝑒

𝑊𝑎,𝑞 𝑊𝑸𝟏

𝑸𝟎 𝑞

𝑎 | 1

𝑎 | 1

𝑎 | > 0


