Automata Theoretic Approach
for Model Checking
Open Probabilistic Systems

Joint work with Yue Ben, Rohit Chadha, Mahesh Viswanathan
September 2015

0 1/

O
Probabilistic Automata (PA) SIS
\/ H 0

111

1
* Like ordinary automata,
 Can go to multiple states with diff. probs. (Rabin ‘63)

Probabilistic Automata (PA)

* Like ordinary automata,
 Can go to multiple states with diff. probs. (Rabin ‘63)

* Formally, a PA, on alphabet X, A = (Q, q,, §, Acc),

* (- initial state.
- Acc € (.
* Foru € X%, 6,(qq, Acc) is the prob of reaching Acc on u

* PA on Finite strings (PFA)

PA Example

*PAA =(0Q,q9,6,Acc)onX:

* Q ={qo, acc,rej}
* go- the initial state
» Acc = {acc}

- X ={a, b}

* Transitions:

2

2 . 1 1
* 64(q0,90) = 3’ 84a(qo,Tej) = 3’ 6p(q0,9s) = 3’ 6p(qo,acc) = 3}

« §,(acc,acc) =1, &,(acc,acc) = 1;
« O4(rej,rej) =1, 6,(rej,rej) = 1.

Given PA A, and x € [0,1],
* L., (A)

- denotes input sequences accepted with prob> x;
* can be non-regular. (Rabin ‘63)

Given PA A, and x € [0,1],
* L., (A)

- denotes input sequences accepted with prob> x;
* can be non-regular. (Rabin ‘63)

* Checking L-,(A) + @ is

 undecidable for x > 0; (Paz 71)
* trivially decidable for x = 0.

PA on Infinite Strings

* Prob Blichi Automata (PBA), Prob Muller Automata (PMA)

* For PA A and a € X,
Prob{.A accepts a} = Prob{A's accepting runs on a}

PA on Infinite Strings

* Prob Blichi Automata (PBA), Prob Muller Automata (PMA)

* For PAA and a € X%,
Prob{cA accepts a} = Prob{cA's accepting runs on a}

* Known results for PBA A: checking if
(is undecidable (Baier et al ‘09)
L.o(A) # 0

is X0-complete. (C.S.V. ‘11)
¢ Loy(A) # @ isX)-complete

{Lzl(ﬂ) + 0
\

L_,(A) = X% are PSPACE-complete(C.S.V. 11)
=1 —

Hierarchical PA (HPA)

* k-HPA A = (Q, qy, 6, Acc) on alphabet X
- States stratified into levels 0, 1, ..., k,

* From a state at level i, on an input,
* At most one transition goes to level i, all others go to higher levels.

Hierarchical PA (HPA)

* k-HPA A = (Q, qy, 6, Acc) on alphabet X
- States stratified into levels 0, 1, ..., k,

* From a state at level i, on an input,
* At most one transition goes to level i, all others go to higher levels.

Hierarchical PA (HPA)

* k-HPA A = (Q, qy, 6, Acc) on alphabet X
- States stratified into levels 0, 1, ..., k,

* From a state at level i, on an input,
+ At most one transition goes to level i, all others go to higher levels.

Hierarchical PA (HPA)

* k-HPA A = (0Q, qq, 8, Acc) on alphabet X
- States stratified into levels 0, 1, ..., k,

* From a state at level i, on an input,
+ At most one transition goes to level i, all others go to higher levels.

For 1-HPA, all transitions on Level 1 are
deterministic with prob 1.

Failure-Prone Open System

User

J1 Server-end Web App

Web Server Web Server

4

! User input (forms)

Failure-Prone Open System

User

| Server-end Web App

Web Server Web Server

4

! User input (forms)

Failure-Prone Open System

Server-end Web App

Web Server Web Server

4

User input (forms)

Model Failure Probabilistically,
e.g. at state g; on input a, 0.4 fail, 0.6 not fail

Model Checking
Failure-Prone Open System

Decide if an open concurrent system (g4 Il g,)
under failure specification (g1 Il g,)
satisfies an incorrectness property (g;,)

with low prob < x

Model Checking
Failure-Prone Open System

Decide if an open concurrent system (g, Il g5)
under failure specification (g1 Il g,)
satisfies an incorrectness property (g;,)

with low prob < x

_/ 9gir | 9> . glf | g2 | Y1p

Model Checking
Failure-Prone Open System

Decide if an open concurrent system (g, Il g5)
under failure specification (g1 Il g,)
satisfies an incorrectness property (g;,)

with low prob < x

& Check if Lo, (A) # @

» AN B 91f g2 Il 91p

Contributions

Consider 1-HPA,

- EXpressiveness
* Accept non-regular languages.

Contributions

Consider 1-HPA,

- EXpressiveness
* Accept non-regular languages.
 Decidability
(Lo (A) £ 0
* Checking if{ Ls,(cA) # @ are all decidable in EXPTIME and are PSPACE-hard.
\L>x(ffq) =X
* Results hold for PFA, PBA, and PMA.

Contributions

o pility resul
. -extre
- Expressiveness for non exIdS
* Accept non-regular languages. thresho '
 Decidability
(L>x(c/4) +Q
* Checking if{ Ls,(cA) # @ are all decidable in EXPTIME and are PSPACE-hard.
\L>x(dq) — Z*

* Results hold for PFA, PBA, and PMA.

Contributions (Cont.)

- Decidability
* Algorithms for 1-HPA

- Backward Alg
* Forward Alg (faster in practice)

* Tool: HPAMC — an HPA Model Checker
* For a 2-HPA A, checking if L+, (A) # @ is undecidable for x > 0.

Contributions (Cont.)

- Decidability
* Algorithms for 1-HPA

- Backward Alg
* Forward Alg (faster in practice)

* Tool: HPAMC — an HPA Model Checker
* For a 2-HPA A, checking if L+, (A) # @ is undecidable for x > 0.

* Restricted Classes

* Integer Automata - L+, (A) is regular.

Expressiveness Results

* Consider the 1-HPA A:

* Theorem: L>1(cﬂ) is not regular.
2

Proof

L 5,,(qo, Acc)
° * 1 — E_ “ >
For u € {0,1}", define Val(u) 6u (40, do)

* Val(u) denotes the % of the prob remaining at level 0 that needs to move to
Acc to reach %

* Val(u0) = %Val(u); Val(ul) = 3Val(u) — 2.

’

Proof

L 5,,(qo, Acc)
° * 1 o E_ - >
For u € 10,1}, define Val(u) %u(do, 4o)

* Val(u) denotes the % of the prob remaining at level 0 that needs to move to
Acc to reach %

* Val(u0) = %Val(u); Val(ul) = 3Val(u) — 2.

’

- v € {0,1}* U {0,1}* represents a number bin(v) € [0,1].
e.g. bin(011) =0 + ziz + 2%

Proof (Cont.)

* Claim: B € {0,1}¢ is ultimately periodic =
Xp = {Val(B')|B'is a prefix of B} is finite.

* Xp is infinite = f is aperiodic = bin(f) is irrational.

Proof (Cont.)

* Claim: B € {0,1}¢ is ultimately periodic =

Xp = {Val(B')|B'is a prefix of B} is finite.
* Xp is infinite = f is aperiodic = bin(f) is irrational.
* We exhibit a § s.t. Xp is infinite,

s.t. L>%(d£l) = {u € {0,1}*|bin(u) > bin(B)}.

* Using Rabin’s result, L>1(c/l) is non-regular.
2

Proof (Cont.)

’ ﬁ — hm ﬁi/ and
L— 00
* 3; is constructed as below:
* [, is the empty string, thus Val(B,) = 1;

’ 2
Bi0 if Val(B) <3

* Birq =
i K,Bil else

Integer Automata (lA)

* A1-HPA A = (Q, qy,5,Acc) on X isan |A, if
* Vg € Qg,a €X,7r €Qq,06,(q,7) is an integer multiple of §,(q, Q,).

Rabin’s example

Integer Automata (lA)

* A1-HPA A = (Q, qy,5,Acc) on X isan |A, if
* Vg € Qy,a € X,r €Qq, 6,(q,7) is an integer multiple of §,(q, Q).

Rabin’s example

* Theorem:
L., (A) is regular for IA A and rational x.

Decidability Results for 1-HPA

Given 1-HPA A = (Q, q¢, 6, Acc) and X,
let |Q] =n,Q = Qo U Q, where Q, and Q,denote level 0 and 1 states.

- A witness set I/ is a subset of Q with at most one state in Q,.

* gy denotes the Q, state of W if exists.
* Wis “good” ~if Qv € X" s.t. v is accepted with prob 1 fromallg € W N Q;.

Decidability Results for 1-HPA

Given 1-HPA A = (Q, q¢, 6, Acc) and X,
let |Q] =n,Q = Qo U Q, where Q, and Q,denote level 0 and 1 states.

- A witness set I/ is a subset of Q with at most one state in Q,.

* gy denotes the Q, state of W if exists.
* Wis “good” ~if Qv € X" s.t. v is accepted with prob 1 fromallg € W N Q;.

* Theorem: L., (A) + O iff
Ju, |[u|] < 4rn8™ and a good witness set H,6,,(go, H) > x.

Proof (=)

* Assume L-, (A) # @, s is the shortest string in it.
* Consider |s| > 2™, and the run diagram:

‘,,/

w=sli+1:j],j <2"
* s = vwt as shown above, and X; = X; and q; = q;.

_ 8w (q1.X)) _
Sanay) OrldiAce).

* By repeating w sufficient number of times (m), we get desired u = vw™

X.

0-
o v = s[0:]

Decidability Results (Cont.)

* Theorem: Determining L~ ,(A) + @ is in EXPTIME.

* Proof : Use last theorem and dynamic programming approaches.
* Backward Algorithm (simpler)
* Forward Algorithm (faster)

Backward Algorithm

* Fori =1, ...,4rn8" and for each good witness set W/,

* Prob(W, i) - the max prob of getting accepted from gy, using an input of
length at most i.

Prob(W, 1) = max{d,(qy, Acc)};
Prob(W,i + 1) = max{

: 114
{Prob(W, i)}, W.— - A‘V
{6,(qw, qv) X Prob(V,i) + 6,(qw,V N Q,) | o 1 | "o
post(W N Qq,a) € V}}. ;0 ;W a0 ;V

* Check if Prob({q,},1) > x.

Forward Algorithm

ForC € Q; of HPAA,x € (0,1),u € X7,

-val(C, x,u) = *~%uld0.0) i the fraction of 0,(qq, Qp) needed in C to

51.(4q0,Q0)

exceed x.
64(q0,C)

Forward Algorithm

» Word « is accepted with prob> x, iff « = ua’ and 3 a good witness
set W s.t. val(W, x,u) < 0.

‘%\\ b

-

Forward Algorithm (cont.)

* For each good witness set W and i = 0, minval(W,i) is
* the min of val over all strings of length at most i;
* minval(W,i) = min{val(W n Q,x,u) | |u| <i}.

Forward Algorithm (cont.)

* For each good witness set W and i = 0, minval(W,i) is
* the min of val over all strings of length at most i;
* minval(W,i) = min{val(W n Q,x,u) | |u| <i}.

* For increasing i and each W, compute minval(W, i) incrementally.

x ifqoeW

* minval(W,0) =
minval(W, 0) {+oo olse

Forward Algorithm (cont..)

Fori > 0,a € X,q € Q,,
Wi = (pre(W,a) n Q;) U {q} for W.

minval(W,i) = min {minval(W,i — 1),
{minval(Wa,q,i —1) -6, (g, Wn Q)
5a (CI, qW)

6a(q' qW) > O}}

@
q all
o— ~®
@ @
q W

iz
iz
iz

5/6
5/6
5/6

Wa,O
0’3}
{1}
\ 400)
Y5

iz
iz
iz

00
V2 +
IZ 1/6
2
0

Iz

iz -1/2
12

FWD vs. BKD

* Let n =|states|, m =|transitions|, w is # of good witness sets, and
s =|X|, Lf and L are the # of iterations before FWD and BKD algs

terminate respectively.

- Complexity
- FWD-0 ((mn + Lfmz)w) vs. BKD - O((L,m + m + n)sw?)

Ly <w=0(02"), Ly < 4rn8™.
* FWD is faster than BKD in practice.

FWD vs. BKD

Web Application n |[(m |s |w |Result (CPU Time in ms) Ly|Ly
Forward |Backward BKD/FWD
cBay Auction |19 |248 |13]60 zgligmpty (1)6 ijg ﬁ&fj j 3
On-line Shopping 1|86 |1472|17[342 nggmpty 1? j?gg g;:zg {2 }i
On-line Shopping 2(80 |1365/17|341 E?igmpty ;r{ jg; gﬁgg E ij
On-line Shopping 3/87 |1489|17/2051 00— — oI5 T8
T -
Larger HPA 13991797 |12/3874 0000 de— om0 2 7

HPAMC: an HPA Model Checker
Arch|tecture

|s HPA?
i ﬁr;ge;;p‘A ________ Assign levels?
i Fallure spec, | HPA Witness sets?
| Property PA i Generator
HPA
Analyzer
 PRISM model

T T T : Compiler

HPA Model
Checker

PRISM-HPA
Converter

HPAMC: an HPA Model Checker

< HPA Verification Tool
(HPA Analysis and Verification |'|” HPA Generation r HPA Generation from PRISM output |
| Process File: | | ‘
Which session may fail? |Session 1 |v|
Which session has priority after failure? |Session 2 |v|
Interleaving execution after failure? |h|cr |v|
Failed Input Failure Pr. Failed State ID{Optional)
{ Add Row |
| Property File: | | ‘
| Qutput Folder: | | ‘

| Generate HPA! |

- - * HPA Generation

* Features
* PA model specification.

* PA model abstraction by
synthesizing system, failure
specification, and incorrectness
property.

HPAMC: an HPA Model Checker

=) HPA Verification Tool

_oEN

|/ HPA Analysis and Verification r HPA Generation |'|’ HPA Generation from PRISM output |

Generate HPA from PRISM output.

‘ [Required] .trajrows) File:

‘ [Recommended] .lab File:

‘ [Optional] .sta File:

| Reset input files. |

‘ Generate HPA!

‘ Output PA to FAT | |

Qutput PA to plain file

HPA Generation from PRISM
Features

Compatible with popular model
checkers like PRISM.

Obtain PA from MDP.

HPAMC: an HPA Model Checker

=] HPA Verification Tool - O

[[’ HPA Analysis and Verification r HPA Generation r HPA Generation from PRISM output |

Load HPA from i File 1 Web URL
| Load HPA: | |
| Output PA to FAT ‘ | Output PA to plain file |

Threshold probability: 03 |

Run Backward Alg. H Run Forward Alg. ‘

Robustness precision: 0.0 |

Decide Robustness.

 HPA Analysis and Verification

* Features

* HPA-based verification of PA
models.

e Targeting decidability and
robustness problems.

Undecidability Results for 2-HPA

* Theorem: Given a 2-HPA A, a rational threshold x € [0, 1], the
problem of determining if L, (A) # @ is undecidable.

* Proof: By construction.
* Reduce the halting problem for counter automata.

Undecidability Results for 2-HPA

1
a:1 a ol
S2 av a:
S S
a&< o
-)%, '
J(z J'] r a:/
. aa i1

. u

Conclusions

* For the 15t time, we identified a decidable and expressive class of PA.
* The results hold for PFA, PBA, and PMA; also for >, >.

* Model checker for open concurrent probabilistic systems - HPAMC.
* Problem of checking L>l(cﬂ) # @ is PSPACE-hard.
2

* Problem of checking L-,(A) # @ is undecidable for 2-HPA.

Future Work

* |dentify subclasses of PA whose non-emptiness can be checked in
poly-time.

* Extend to infinite acceptance and liveness property.

* Support temporal logic property.

* Tool refinement.

Thanks! Questions?

Automata Theoretic Approach for Model Checking Open Probabilistic Systems
A. Prasad Sistla
Joint work with Yue Ben, Rohit Chadha, Mahesh Viswanathan

Decidability Results (Cont.)

* Theorem: Determining L~ ,(A) + @ is in EXPTIME.

* Proof : Use last theorem and a dynamic programming approach.
* Let X be the set of witness sets U such that U N Qy, + @ and U N Q is a good
set, Y be the set of good witness sets; Y < X.
* Prob(U,1) = max{6,(qy,W)la € Z,W € Y,post(UN Q,a) S W};
{Prob(U,i)} U
* Prob(U,i + 1) = max ({5a(qy, qy)Prob(V,i) + 6,(qy,V N Q1)|).
a €V eX,post(UNQqa) €V}

* Check if Prob({q,},.) > x.
: -> Backward Alg

. Wog | W Wog | W
Forward Algorithm (cont..) e R

*Fori > 0,a €ZX,q €Qy Wyq = (pre(W,a) N Q) U{q} foreach W.

- fWNQy # 0, mval(W,i) = min {mval(W,i — 1),

mval(Wg ¢,i—1)-84 (q,WN Q1)
(reeitea D00 R0 15 (g, qu) > O3}

*IfWNQy, =0 mval(W,i) =
—00 if IW, 4, of W' s. t. mval(Wa,q,i —1) < 8,(q, W N Qy)
mval(W,i — 1) else

Forward Algorithm (cont..)

Fori > 0,a €X,q € Qp, Wyq = (pre(W,a) N Q) U {q} foreach W.

IfW NQy, + 0 mval(W,i) = min {mval(W,i — 1),

mval(Wq,i —1) — 8, (¢, W N Q)
{ 6a (q, CIW) Sa(Q» qW) > O}}

@
q all
@ ~®
@ @
q W

Forward Algorithm (cont...)

Fori > 0,a €X,q € Qp, Wyq = (pre(W,a) N Q) U {q} foreach W.
IfW N Qy =0, mval(W,i) =

—00 if IW, , of W' s. t. mval(Wa,q,i — 1) <6,(q,WnQ,p)
mval(W,i — 1) else
all

