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Probabilistic Automata (PA)

 Like ordinary automata,

 Can go to multiple states with diff. probs. (Rabin ‘63)
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Probabilistic Automata (PA)

 Like ordinary automata,

 Can go to multiple states with diff. probs. (Rabin ‘63)

 Formally, a PA, on alphabet Σ, 𝒜 = 𝑄, 𝑞0, 𝛿, A𝑐𝑐 , 

 𝑞0 - initial state.

 Acc ⊆ 𝑄.

 For u ∈ Σ∗, 𝛿𝑢(𝑞0, 𝐴𝑐𝑐) is the prob of reaching 𝐴𝑐𝑐 on 𝑢

 PA on Finite strings (PFA) 
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PA Example

 PA 𝒜 = 𝑄, 𝑞0, 𝛿, A𝑐𝑐 on Σ :
 𝑄 = 𝑞0, 𝑎𝑐𝑐, 𝑟𝑒𝑗

 𝑞0- the initial state

 𝐴𝑐𝑐 = {𝑎𝑐𝑐}

 Σ = {𝑎, 𝑏}

 Transitions:

 𝛿𝑎 𝑞0, 𝑞0 =
2

3
， 𝛿𝑎 𝑞0, 𝑟𝑒𝑗 =

1

3
；𝛿𝑏 𝑞0, 𝑞𝑠 =

1

3
， 𝛿𝑏 𝑞0, 𝑎𝑐𝑐 =

2

3
；

 𝛿𝑎 𝑎𝑐𝑐, 𝑎𝑐𝑐 = 1，𝛿𝑏 𝑎𝑐𝑐, 𝑎𝑐𝑐 = 1；

 𝛿𝑎 𝑟𝑒𝑗, 𝑟𝑒𝑗 = 1，𝛿𝑏 𝑟𝑒𝑗, 𝑟𝑒𝑗 = 1.

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐

b | 1/3 b | 2/3

a | 1/3

a,b | 1

a | 2/3

a,b | 1



Given PA 𝒜, and 𝑥 ∈ [0,1], 

 𝑳>𝒙 𝓐
 denotes input sequences accepted with prob> 𝑥;

 can be non-regular. (Rabin ‘63)



Given PA 𝒜, and 𝑥 ∈ [0,1], 

 𝑳>𝒙 𝓐
 denotes input sequences accepted with prob> 𝑥;

 can be non-regular. (Rabin ‘63)

 Checking 𝑳>𝒙 𝓐 ≠ ∅ is 

 undecidable for 𝑥 > 0; (Paz ‘71)

 trivially decidable for 𝑥 = 0. 



PA on Infinite Strings

 Prob Büchi Automata (PBA), Prob Muller Automata (PMA)

 For PA 𝒜 and 𝛼 ∈ Σ𝜔 ,

Prob 𝒜 accepts 𝛼 = Prob{𝒜′s accepting runs on 𝛼}



PA on Infinite Strings

 Prob Büchi Automata (PBA), Prob Muller Automata (PMA)

 For PA 𝒜 and 𝛼 ∈ Σ𝜔 ,

Prob 𝒜 accepts 𝛼 = Prob{𝒜′s accepting runs on 𝛼}

 Known results for PBA 𝒜: checking if

𝑳>𝟎 𝓐 ≠ ∅  
is undecidable (Baier et al ‘09)

is Σ2
0−complete. (C.S.V. ‘11)

𝑳>𝒙 𝓐 ≠ ∅ is Σ2
0−complete

 
𝑳=𝟏 𝓐 ≠ ∅

𝑳=𝟏 𝓐 = 𝚺𝝎
are PSPACE−complete(C.S.V. ‘11)



Hierarchical PA (HPA)

 𝑘-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, A𝑐𝑐 on alphabet Σ
 States stratified into levels 0, 1,… , 𝑘, 

 From a state at level 𝑖, on an input, 
 At most one transition goes to level 𝑖, all others go to higher levels.
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Hierarchical PA (HPA)

 𝑘-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, A𝑐𝑐 on alphabet Σ
 States stratified into levels 0, 1,… , 𝑘, 

 From a state at level 𝑖, on an input, 
 At most one transition goes to level 𝑖, all others go to higher levels.
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Hierarchical PA (HPA)

 𝑘-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, A𝑐𝑐 on alphabet Σ
 States stratified into levels 0, 1,… , 𝑘, 

 From a state at level 𝑖, on an input, 
 At most one transition goes to level 𝑖, all others go to higher levels.

1-HPA Not HPA
Level 0 Level 1

𝑞𝑠 𝑞2

𝑞1

b | 1/3 b | 2/3

a | 1/3
a,b | 1

a | 2/3

a,b | 1

For 1-HPA, all transitions on Level 1 are 
deterministic with prob 1.

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐

b | 1/3 b | 2/3

a | 1/3

a,b | 1

a | 2/3
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Failure-Prone Open System

Server-end Web App

User User

User input (forms)
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Failure-Prone Open System

Fail

Server-end Web App

User User

User input (forms)

Model Failure Probabilistically, 
e.g. at state 𝑞1 on input 𝑎, 0.4 fail, 0.6 not fail



Model Checking
Failure-Prone Open System
Decide if an open concurrent system (𝑔1 ∥ 𝑔2)

under failure specification (𝑔1𝑓 ∥ 𝑔2)

satisfies an incorrectness property (𝑔1𝑝)

with low prob ≤ 𝑥
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Model Checking
Failure-Prone Open System
Decide if an open concurrent system (𝑔1 ∥ 𝑔2)

under failure specification (𝑔1𝑓 ∥ 𝑔2)

satisfies an incorrectness property (𝑔1𝑝)

with low prob ≤ 𝑥

⇔ Check if 𝑳>𝒙 𝓐 ≠ ∅

𝑔1 ∥ 𝑔2 𝑔1𝑓 ∥ 𝑔2
𝑔1𝑓 ∥ 𝑔2 ∥ 𝑔1𝑝
= 𝓐
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Consider 1-HPA,

 Expressiveness
 Accept non-regular languages.
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𝐿>𝑥 𝒜 ≠ ∅

𝐿≥𝑥 𝒜 ≠ ∅

𝐿>𝑥 𝒜 = Σ∗
are all decidable in EXPTIME and are PSPACE-hard.

 Results hold for PFA, PBA, and PMA.
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𝐿>𝑥 𝒜 ≠ ∅

𝐿≥𝑥 𝒜 ≠ ∅

𝐿>𝑥 𝒜 = Σ∗
are all decidable in EXPTIME and are PSPACE-hard.

 Results hold for PFA, PBA, and PMA.



Contributions (Cont.)

 Decidability
 Algorithms for 1-HPA

 Backward Alg

 Forward Alg (faster in practice)

 Tool: HPAMC – an HPA Model Checker

 For a 2-HPA 𝒜, checking if 𝐿>𝑥 𝒜 ≠ ∅ is undecidable for 𝑥 > 0.



Contributions (Cont.)

 Decidability
 Algorithms for 1-HPA

 Backward Alg

 Forward Alg (faster in practice)

 Tool: HPAMC – an HPA Model Checker

 For a 2-HPA 𝒜, checking if 𝐿>𝑥 𝒜 ≠ ∅ is undecidable for 𝑥 > 0.

 Restricted Classes

 Integer Automata - 𝐿>𝑥 𝒜 is regular.



Expressiveness Results

 Consider the 1-HPA 𝒜:

 Theorem: 𝑳
>
𝟏

𝟐

𝓐 is not regular.

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐

1 | 1/3 1 | 2/3

0 | 1/3

0,1 | 1

0 | 2/3

0,1 | 1
Level 0 Level 1



Proof

 For 𝑢 ∈ 0,1 ∗, define 𝑉𝑎𝑙 𝑢 =
1

2
− 𝛿𝑢 𝑞0, 𝐴𝑐𝑐

𝛿𝑢 𝑞0, 𝑞0
,

 𝑉𝑎𝑙 𝑢 denotes the % of the prob remaining at level 0 that needs to move to 

𝐴𝑐𝑐 to reach 
1

2
.

 𝑉𝑎𝑙 𝑢0 =
3

2
𝑉𝑎𝑙 𝑢 ; 𝑉𝑎𝑙 𝑢1 = 3𝑉𝑎𝑙 𝑢 − 2.
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Proof

 For 𝑢 ∈ 0,1 ∗, define 𝑉𝑎𝑙 𝑢 =
1

2
− 𝛿𝑢 𝑞0, 𝐴𝑐𝑐

𝛿𝑢 𝑞0, 𝑞0
,

 𝑉𝑎𝑙 𝑢 denotes the % of the prob remaining at level 0 that needs to move to 

𝐴𝑐𝑐 to reach 
1

2
.

 𝑉𝑎𝑙 𝑢0 =
3

2
𝑉𝑎𝑙 𝑢 ; 𝑉𝑎𝑙 𝑢1 = 3𝑉𝑎𝑙 𝑢 − 2.

 𝑣 ∈ 0,1 ∗ ∪ 0,1 𝜔 represents a number 𝑏𝑖𝑛 𝑣 ∈ 0,1 .

e.g. 𝑏𝑖𝑛 011 = 0 +
1

22
+

1

23
.

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐
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Proof (Cont.)

 Claim: 𝛽 ∈ 0,1 𝜔 is ultimately periodic ⇒

𝐗𝜷 = {𝑽𝒂𝒍(𝜷′)|𝜷′𝐢𝐬 𝐚 𝐩𝐫𝐞𝐟𝐢𝐱 𝐨𝐟 𝜷} is finite.

 X𝛽 is infinite ⇒ 𝛽 is aperiodic ⇒ 𝑏𝑖𝑛(𝛽) is irrational.
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Proof (Cont.)

 Claim: 𝛽 ∈ 0,1 𝜔 is ultimately periodic ⇒

𝐗𝜷 = {𝑽𝒂𝒍(𝜷′)|𝜷′𝐢𝐬 𝐚 𝐩𝐫𝐞𝐟𝐢𝐱 𝐨𝐟 𝜷} is finite.

 X𝛽 is infinite ⇒ 𝛽 is aperiodic ⇒ 𝑏𝑖𝑛(𝛽) is irrational.

 We exhibit a 𝛽 s.t. X𝛽 is infinite, 

s.t. 𝐿
>
1

2

𝒜 = {𝑢 ∈ 0,1 ∗|𝑏𝑖𝑛 𝑢 > 𝑏𝑖𝑛(𝛽)}. 

 Using Rabin’s result, 𝐿
>
1

2

𝒜 is non-regular.

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐
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Proof (Cont.)

 𝛽 = lim
𝑖→∞

𝛽𝑖, and

 𝛽𝑖 is constructed as below:

 𝛽0 is the empty string, thus 𝑉𝑎𝑙 𝛽0 =
1

2
;

 𝛽𝑖+1 =  
𝛽𝑖0 𝑖𝑓 𝑉𝑎𝑙 𝛽𝑖 <

2

3

𝛽𝑖1 𝑒𝑙𝑠𝑒
.

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐

1 | 1/3

1 | 2/3

0 | 1/3
0,1 | 1

0 | 2/3

0,1 | 1
Level 0 Level 1



Integer Automata (IA)

 A 1-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, 𝐴𝑐𝑐 on 𝛴 is an IA, if
 ∀𝑞 ∈ 𝑄0, 𝑎 ∈ Σ, 𝑟 ∈ Q1, 𝛿𝑎 𝑞, 𝑟 is an integer multiple of 𝛿𝑎 𝑞, 𝑄0 .

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐

1 | 2/3

0 | 2/3

0,1 | 1
0, 1 | 1/3

0,1 | 1

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐

1 | 1/2

0 | 1/2

0,1 | 1
0, 1 | 1/2

0,1 | 1

Rabin’s example



Integer Automata (IA)

 A 1-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, 𝐴𝑐𝑐 on 𝛴 is an IA, if
 ∀𝑞 ∈ 𝑄0, 𝑎 ∈ Σ, 𝑟 ∈ Q1, 𝛿𝑎 𝑞, 𝑟 is an integer multiple of 𝛿𝑎 𝑞, 𝑄0 .

 Theorem: 

𝑳>𝒙 𝓐 is regular for IA 𝓐 and rational 𝒙.

𝑞0 𝑟𝑒𝑗

𝑎𝑐𝑐

1 | 2/3

0 | 2/3

0,1 | 1
0, 1 | 1/3
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Rabin’s example



Decidability Results for 1-HPA

Given 1-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, 𝐴𝑐𝑐 and Σ, 

 let 𝑄 = 𝑛, 𝑄 = 𝑄0 ∪ 𝑄1, where 𝑄0 and 𝑄1denote level 0 and 1 states.

 A witness set 𝑊 is a subset of 𝑄 with at most one state in 𝑄0.

 𝑞𝑊 denotes the 𝑄0 state of 𝑊 if exists.

 𝑊 is “good” ~ if ∃𝑣 ∈ Σ∗ s. t. 𝑣 is accepted with prob 1 from all 𝑞 ∈ 𝑊 ∩ 𝑄1.



Decidability Results for 1-HPA

Given 1-HPA 𝒜 = 𝑄, 𝑞0, 𝛿, 𝐴𝑐𝑐 and Σ, 

 let 𝑄 = 𝑛, 𝑄 = 𝑄0 ∪ 𝑄1, where 𝑄0 and 𝑄1denote level 0 and 1 states.

 A witness set 𝑊 is a subset of 𝑄 with at most one state in 𝑄0.

 𝑞𝑊 denotes the 𝑄0 state of 𝑊 if exists.

 𝑊 is “good” ~ if ∃𝑣 ∈ Σ∗ s. t. 𝑣 is accepted with prob 1 from all 𝑞 ∈ 𝑊 ∩ 𝑄1.

 Theorem: 𝑳>𝒙 𝓐 ≠ ∅ iff 

∃𝒖, |𝒖| ≤ 𝟒𝒓𝒏𝟖𝒏 and a good witness set 𝑯, 𝜹𝒖 𝒒𝟎, 𝑯 > 𝒙.



Proof (⇒)

 Assume 𝐿>𝑥 𝒜 ≠ ∅, 𝑠 is the shortest string in it.

 Consider 𝑠 > 2𝑛, and the run diagram:

 𝑠 = 𝑣𝑤𝑡 as shown above, and 𝑋𝑖 = 𝑋𝑗 and 𝑞𝑖 = 𝑞𝑗.


𝛿𝑤 𝑞𝑖,𝑋𝑗

𝛿𝑤 𝑞𝑖,𝑄1
> 𝛿𝑡(𝑞𝑗 , 𝐴𝑐𝑐).

 By repeating 𝑤 sufficient number of times (𝑚), we get desired 𝑢 = 𝑣𝑤𝑚.

𝑄1

𝑄0𝑞0 𝑞𝑖 𝑞𝑗
s

𝑣 = 𝑠[0: 𝑖] 𝑤 = 𝑠 𝑖 + 1: 𝑗 , 𝑗 ≤ 2𝑛 𝑡

𝑋𝑖

𝑋𝑗

𝑌𝑖



Decidability Results (Cont.)

 Theorem: Determining 𝑳>𝒙 𝓐 ≠ ∅ is in EXPTIME.

 Proof : Use last theorem and dynamic programming approaches.
 Backward Algorithm (simpler)

 Forward Algorithm (faster)



Backward Algorithm

 For 𝑖 = 1,… , 4𝑟𝑛8𝑛 and for each good witness set 𝑊,

 𝐏𝐫𝐨𝐛(𝐖, 𝐢) - the max prob of getting accepted from 𝑞𝑊 using an input of 
length at most 𝑖. 

𝑃𝑟𝑜𝑏 W, 1 = max 𝛿𝑎 𝑞W, 𝐴𝑐𝑐 ;

𝑃𝑟𝑜𝑏 W, 𝑖 + 1 = max{

𝑃𝑟𝑜𝑏 W, 𝑖 ,
𝛿𝑎 𝑞W, 𝑞𝑉 × 𝑃𝑟𝑜𝑏 𝑉, 𝑖 + 𝛿𝑎 𝑞W, 𝑉 ∩ 𝑄1

𝑝𝑜𝑠𝑡 𝑊 ∩ 𝑄1, 𝑎 ⊆ 𝑉}}.

 Check if 𝑷𝒓𝒐𝒃 𝒒𝟎 , 𝒊 > 𝒙.

𝑊 𝑉𝑸𝟏

𝑸𝟎 𝑞𝑉𝑞𝑊

𝑎 | 1

𝑎 | 1

𝑎 | ≥ 0𝑞0



Forward Algorithm

 For 𝐶 ⊆ 𝑄1 of HPA 𝒜, 𝑥 ∈ (0,1), 𝑢 ∈ Σ∗,

 𝐯𝐚𝐥(𝐂, 𝐱, 𝐮) =
x−𝛿𝑢(𝑞0,𝐶)

𝛿𝑢(𝑞0,𝑄0)
is the fraction of 𝛿𝑢(𝑞0, 𝑄0) needed in 𝐶 to 

exceed 𝑥.

𝑸𝟏

𝑸𝟎 𝑞0 𝑞𝑖

𝐶

𝒖

𝐴𝑐𝑐

𝛿𝑢(𝑞0, 𝑄0)

𝛿𝑢(𝑞0, 𝐶)

𝒖𝒖



Forward Algorithm

 Word 𝛼 is accepted with prob> 𝑥, iff 𝛼 = 𝑢𝛼′ and ∃ a good witness 
set 𝑊 s.t. 𝒗𝒂𝒍 𝑾, 𝒙, 𝒖 < 𝟎.

𝑞0

𝑸𝟏

𝑸𝟎 𝑞𝑖

W

𝒖

𝐴𝑐𝑐

𝜶′



Forward Algorithm (cont.)

 For each good witness set 𝑊 and 𝑖 ≥ 0, 𝐦𝐢𝐧𝒗𝒂𝒍 𝑾, 𝒊 is 

 the min of 𝑣𝑎𝑙 over all strings of length at most 𝑖;

 min𝑣𝑎𝑙 𝑊, 𝑖 = min 𝑣𝑎𝑙 𝑊 ∩ 𝑄1, 𝑥, 𝑢 𝑢 ≤ 𝑖 .



Forward Algorithm (cont.)

 For each good witness set 𝑊 and 𝑖 ≥ 0, 𝐦𝐢𝐧𝒗𝒂𝒍 𝑾, 𝒊 is 

 the min of 𝑣𝑎𝑙 over all strings of length at most 𝑖;

 min𝑣𝑎𝑙 𝑊, 𝑖 = min 𝑣𝑎𝑙 𝑊 ∩ 𝑄1, 𝑥, 𝑢 𝑢 ≤ 𝑖 .

 For increasing 𝑖 and each 𝑊, compute 𝐦𝐢𝐧𝒗𝒂𝒍 𝑾, 𝒊 incrementally.

 min𝑣𝑎𝑙 𝑊, 0 =  
𝑥 𝑖𝑓 𝑞0 ∈ 𝑊

+∞ 𝑒𝑙𝑠𝑒



Forward Algorithm (cont..)

For 𝑖 > 0, 𝑎 ∈ Σ, 𝑞 ∈ 𝑄0, 

𝑾𝐚,𝒒 = pre 𝑊, 𝑎 ∩ 𝑄1 ∪ {𝑞} for 𝑊.

𝐦𝐢𝐧𝒗𝒂𝒍 𝑾, 𝒊 = min {min𝑣𝑎𝑙 𝑊, 𝑖 − 1 ,

min𝑣𝑎𝑙 𝑊𝑎,𝑞 , 𝑖 − 1 − 𝛿𝑎 𝑞,𝑊 ∩ 𝑄1
𝛿𝑎 𝑞, 𝑞𝑊

𝛿𝑎 𝑞, 𝑞𝑊 > 0 }

𝑊𝑎,𝑞 𝑊𝑸𝟏

𝑸𝟎 𝑞𝑤𝑞

𝑎 | 1

𝑎 | 1

𝑎 | > 0
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a| 3/5

a| 1/3
a| 1/6

a| 1/2
b| 1b| 1

a,b| 1

a,b| 1

a| 2/5

b| 1
a| 1

Forward Example

Witness Sets: {1,3} {0,2,3} {1,2,3}

𝒊 = 𝟎 +∞ ½ +∞

𝒊 = 𝟏 1/6 ½ 1/6

𝒊 = 𝟐 1/6 ½ 0

𝒊 = 𝟑 0 ½  -1/2

X=1/2 𝑊𝑎,1𝑊𝑎,0

𝑊𝑎,1𝑊𝑎,0
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a| 3/5

a| 1/3
a| 1/6

a| 1/2
b| 1b| 1

a,b| 1

a,b| 1

a| 2/5

b| 1
a| 1

Forward Example

Witness 
Sets:

∅ {3} {2,3} {0} {1} {0,3} {1,3} {0,2,3} {1,2,3}

𝒊 = 𝟎 +∞ +∞ +∞ ½ +∞ ½ +∞ ½ +∞

𝒊 = 𝟏 ½ ½ ½ ½ 5/6 ½ 1/6 ½ 1/6

𝒊 = 𝟐 ½ ½ ½ ½ 5/6 ½ 1/6 ½ 0

𝒊 = 𝟑 ½  ½  ½  ½  5/6 ½  0 ½  -1/2

X=1/2

𝑊𝑏,0 𝑊𝑎,0

𝑊𝑎,0

𝑊𝑏,0

𝑊𝑏,0

𝑊𝑎,0

𝑊𝑎,0
𝑊𝑎,1

𝑊𝑎,1𝑊𝑎,0

𝑊𝑎,1𝑊𝑎,0



FWD vs. BKD

 Let 𝑛 =|states|, 𝑚 =|transitions|, 𝑤 is # of good witness sets, and 
𝑠 =|Σ|, 𝐿f and 𝐿𝑏 are the # of iterations before FWD and BKD algs
terminate respectively.

 Complexity

 FWD - 𝐎 𝐦𝐧 + 𝑳𝒇𝒎
𝟐 𝐰 vs. BKD - 𝐎( 𝑳𝒃𝐦+𝐦+ 𝒏 𝐬𝒘𝟐)

 𝐿𝑓 ≤ 𝑤 = 𝑂(2𝑛), 𝐿𝑏 ≤ 4𝑟𝑛8𝑛.

 FWD is faster than BKD in practice.



FWD vs. BKD



HPAMC: an HPA Model Checker
Architecture

HPA 
Generator

HPA 
Analyzer

PRISM-HPA 
Converter

HPA Model 
Checker

PRISM 
Compiler

Process PA,
Failure spec,
Property PA

PRISM model

HPA 
model

Is HPA?
Assign levels?
Witness sets?

𝑥



HPAMC: an HPA Model Checker

• HPA Generation

• Features
• PA model specification.

• PA model abstraction by 
synthesizing system, failure 
specification, and incorrectness 
property.



HPAMC: an HPA Model Checker

• HPA Generation from PRISM

• Features
• Compatible with popular model 

checkers like PRISM.

• Obtain PA from MDP.



HPAMC: an HPA Model Checker

• HPA Analysis and Verification

• Features
• HPA-based verification of PA 

models.

• Targeting decidability and 
robustness problems.



Undecidability Results for 2-HPA

 Theorem: Given a 2-HPA 𝓐, a rational threshold 𝒙 ∈ [𝟎, 𝟏], the 
problem of determining if 𝑳>𝒙 𝓐 ≠ ∅ is undecidable.

 Proof: By construction.
 Reduce the halting problem for counter automata.



Undecidability Results for 2-HPA



Conclusions

 For the 1st time, we identified a decidable and expressive class of PA.

 The results hold for PFA, PBA, and PMA; also for >,≥.

 Model checker for open concurrent probabilistic systems - HPAMC.

 Problem of checking 𝐿
>
1

2

𝒜 ≠ ∅ is PSPACE-hard.

 Problem of checking 𝐿>𝑥 𝒜 ≠ ∅ is undecidable for 2-HPA.



Future Work

 Identify subclasses of PA whose non-emptiness can be checked in 
poly-time.

 Extend to infinite acceptance and liveness property.

 Support temporal logic property.

 Tool refinement.



Thanks! Questions?

Automata Theoretic Approach for Model Checking Open Probabilistic Systems

A. Prasad Sistla

Joint work with Yue Ben, Rohit Chadha, Mahesh Viswanathan





Decidability Results (Cont.)

 Theorem: Determining 𝑳>𝒙 𝓐 ≠ ∅ is in EXPTIME.

 Proof : Use last theorem and a dynamic programming approach.
 Let 𝒳 be the set of witness sets U such that 𝑈 ∩ 𝑄0 ≠ ∅ and 𝑈 ∩ 𝑄1 is a good 

set, 𝒴 be the set of good witness sets; 𝒴 ⊆ 𝒳.

 𝑃𝑟𝑜𝑏 𝑈, 1 = max 𝛿𝑎 𝑞𝑈 ,𝑊 𝑎 ∈ Σ,𝑊 ∈ 𝒴, 𝑝𝑜𝑠𝑡 𝑈 ∩ 𝑄1, 𝑎 ⊆ 𝑊 ;

 𝑃𝑟𝑜𝑏 𝑈, 𝑖 + 1 = max

{𝑃𝑟𝑜𝑏 𝑈, 𝑖 } ∪

{𝛿𝑎 𝑞𝑈, 𝑞𝑉 𝑃𝑟𝑜𝑏 𝑉, 𝑖 + 𝛿𝑎 𝑞𝑈, 𝑉 ∩ 𝑄1 |

𝑎 ∈ Σ, 𝑉 ∈ 𝒳, 𝑝𝑜𝑠𝑡 𝑈 ∩ 𝑄1, 𝑎 ⊆ 𝑉}

.

 Check if 𝑃𝑟𝑜𝑏 𝑞0 , . > 𝑥.
-> Backward Alg



Forward Algorithm (cont..)

 For 𝑖 > 0, 𝑎 ∈ Σ, 𝑞 ∈ 𝑄0, 𝑾𝐚,𝒒 = pre 𝑊, 𝑎 ∩ 𝑄1 ∪ {𝑞} for each 𝑊.

 If 𝑊 ∩ 𝑄0 ≠ ∅, 𝐦𝒗𝒂𝒍 𝑾, 𝒊 = min {m𝑣𝑎𝑙 𝑊, 𝑖 − 1 ,

{
m𝑣𝑎𝑙 𝑊𝑎,𝑞,𝑖−1 −𝛿𝑎 𝑞,𝑊∩ 𝑄1

𝛿𝑎 𝑞,𝑞𝑊
|𝛿𝑎(𝑞, 𝑞𝑊) > 0}}.

 If 𝑊 ∩ 𝑄0 = ∅, 𝐦𝒗𝒂𝒍 𝑾, 𝒊 =

 
−∞ if ∃𝑊𝑎,𝑞 of 𝑊 s. t. m𝑣𝑎𝑙 𝑊𝑎,𝑞 , 𝑖 − 1 < 𝛿𝑎 𝑞,𝑊 ∩ 𝑄1
m𝑣𝑎𝑙 𝑊, 𝑖 − 1 𝑒𝑙𝑠𝑒

𝑊𝑎,𝑞 𝑊𝑸𝟏

𝑸𝟎 𝑞𝑤𝑞

𝑎
Pr=1

𝑎
Pr>0

𝑊𝑎,𝑞 𝑊𝑸𝟏

𝑸𝟎 𝑞

𝑎
Pr=1

𝑎
Pr>0



Forward Algorithm (cont..)

For 𝑖 > 0, 𝑎 ∈ Σ, 𝑞 ∈ 𝑄0, 𝑾𝐚,𝒒 = pre 𝑊, 𝑎 ∩ 𝑄1 ∪ {𝑞} for each 𝑊.

If 𝑊 ∩ 𝑄0 ≠ ∅, 𝐦𝒗𝒂𝒍 𝑾, 𝒊 = min {m𝑣𝑎𝑙 𝑊, 𝑖 − 1 ,

m𝑣𝑎𝑙 𝑊𝑎,𝑞 , 𝑖 − 1 − 𝛿𝑎 𝑞,𝑊 ∩ 𝑄1
𝛿𝑎 𝑞, 𝑞𝑊

𝛿𝑎 𝑞, 𝑞𝑊 > 0 }

𝑊𝑎,𝑞 𝑊𝑸𝟏

𝑸𝟎 𝑞𝑤𝑞

𝑎 | 1

𝑎 | 1

𝑎 | > 0



Forward Algorithm (cont…)

For 𝑖 > 0, 𝑎 ∈ Σ, 𝑞 ∈ 𝑄0, 𝑾𝐚,𝒒 = pre 𝑊, 𝑎 ∩ 𝑄1 ∪ {𝑞} for each 𝑊.

If 𝑊 ∩ 𝑄0 = ∅, 𝐦𝒗𝒂𝒍 𝑾, 𝒊 =

 
−∞ if ∃𝑊𝑎,𝑞 of 𝑊 s. t. m𝑣𝑎𝑙 𝑊𝑎,𝑞 , 𝑖 − 1 < 𝛿𝑎 𝑞,𝑊 ∩ 𝑄1
m𝑣𝑎𝑙 𝑊, 𝑖 − 1 𝑒𝑙𝑠𝑒

𝑊𝑎,𝑞 𝑊𝑸𝟏

𝑸𝟎 𝑞

𝑎 | 1

𝑎 | 1

𝑎 | > 0


