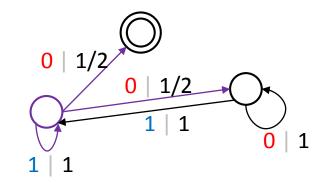
Automata Theoretic Approach for Model Checking Open Probabilistic Systems

A. Prasad Sistla

Joint work with Yue Ben, Rohit Chadha, Mahesh Viswanathan

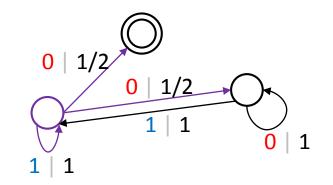
September 2015

Probabilistic Automata (PA)



- Like ordinary automata,
- Can go to multiple states with diff. probs. (Rabin '63)

Probabilistic Automata (PA)



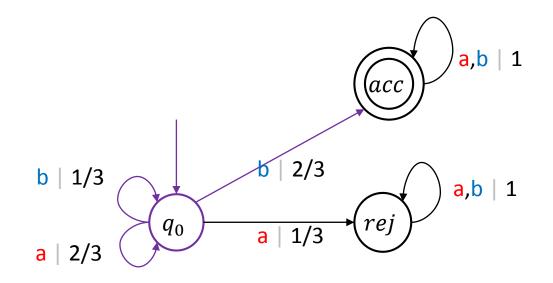
- Like ordinary automata,
- Can go to multiple states with diff. probs. (Rabin '63)
- Formally, a **PA**, on alphabet Σ , $\mathcal{A} = (Q, q_0, \delta, Acc)$,
 - q_0 initial state.
 - Acc $\subseteq Q$.
 - For $\mathbf{u} \in \Sigma^*$, $\delta_u(q_0, Acc)$ is the prob of reaching Acc on u
- PA on Finite strings (PFA)

PA Example

- PA $\mathcal{A} = (Q, q_0, \delta, Acc)$ on Σ :
 - $Q = \{q_0, acc, rej\}$
 - q_0 the initial state
 - $Acc = \{acc\}$
 - $\Sigma = \{a, b\}$
 - Transitions:

•
$$\delta_a(q_0, q_0) = \frac{2}{3}$$
, $\delta_a(q_0, rej) = \frac{1}{3}$; $\delta_b(q_0, q_s) = \frac{1}{3}$, $\delta_b(q_0, acc) = \frac{2}{3}$;
• $\delta_a(acc, acc) = 1$, $\delta_b(acc, acc) = 1$;

• $\delta_a(rej, rej) = 1$, $\delta_b(rej, rej) = 1$.



Given PA \mathcal{A} , and $x \in [0,1]$,

- $L_{>x}(\mathcal{A})$
 - denotes input sequences accepted with prob> x;
 - can be non-regular. (Rabin '63)

Given PA \mathcal{A} , and $x \in [0,1]$,

- $L_{>x}(\mathcal{A})$
 - denotes input sequences accepted with prob> x;
 - can be non-regular. (Rabin '63)
- Checking $L_{>x}(\mathcal{A}) \neq \emptyset$ is
 - undecidable for x > 0; (Paz '71)
 - trivially decidable for x = 0.

PA on Infinite Strings

- Prob Büchi Automata (PBA), Prob Muller Automata (PMA)
- For PA \mathcal{A} and $\alpha \in \Sigma^{\omega}$,

Prob{ \mathcal{A} accepts α } = Prob{ \mathcal{A} 's accepting runs on α }

PA on Infinite Strings

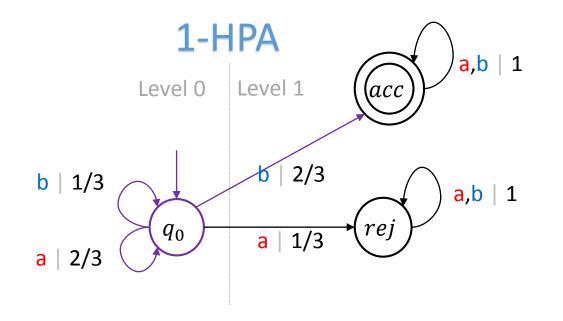
- Prob Büchi Automata (PBA), Prob Muller Automata (PMA)
- For PA \mathcal{A} and $\alpha \in \Sigma^{\omega}$,

Prob{ \mathcal{A} accepts α } = Prob{ \mathcal{A} 's accepting runs on α }

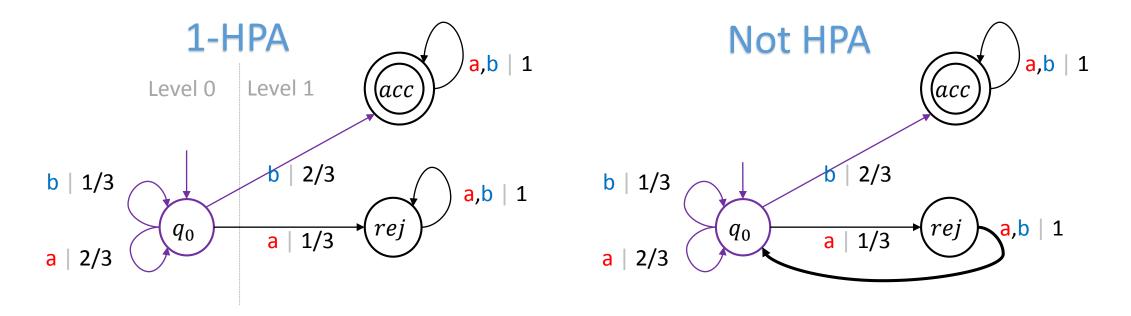
• Known results for PBA \mathcal{A} : checking if $\begin{cases}
L_{>0}(\mathcal{A}) \neq \emptyset \\
L_{>x}(\mathcal{A}) \neq \emptyset
\end{cases}$ $\begin{cases}
\text{is undecidable (Baier et al '09)} \\
\text{is } \Sigma_2^0 - \text{complete. (C.S.V. '11)} \\
L_{>x}(\mathcal{A}) \neq \emptyset
\end{cases}$ $is \Sigma_2^0 - \text{complete} \\
\begin{cases}
L_{=1}(\mathcal{A}) \neq \emptyset \\
L_{=1}(\mathcal{A}) = \Sigma^{\omega}
\end{cases}$ are PSPACE-complete(C.S.V. '11)

- k-HPA $\mathcal{A} = (Q, q_0, \delta, Acc)$ on alphabet Σ
 - States stratified into levels 0, 1, ..., k,
 - From a state at level *i*, on an input,
 - At most one transition goes to level *i*, all others go to higher levels.

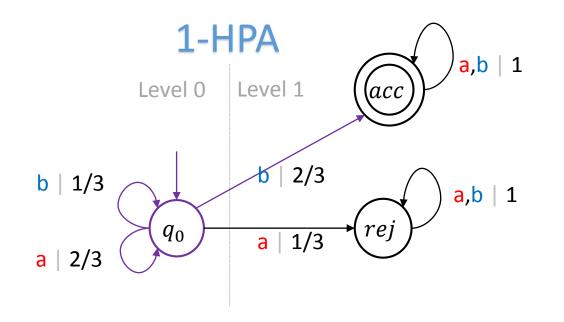
- k-HPA $\mathcal{A} = (Q, q_0, \delta, Acc)$ on alphabet Σ
 - States stratified into levels 0, 1, ..., k,
 - From a state at level *i*, on an input,
 - At most one transition goes to level *i*, all others go to higher levels.



- k-HPA $\mathcal{A} = (Q, q_0, \delta, Acc)$ on alphabet Σ
 - States stratified into levels 0, 1, ..., k,
 - From a state at level *i*, on an input,
 - At most one transition goes to level *i*, all others go to higher levels.

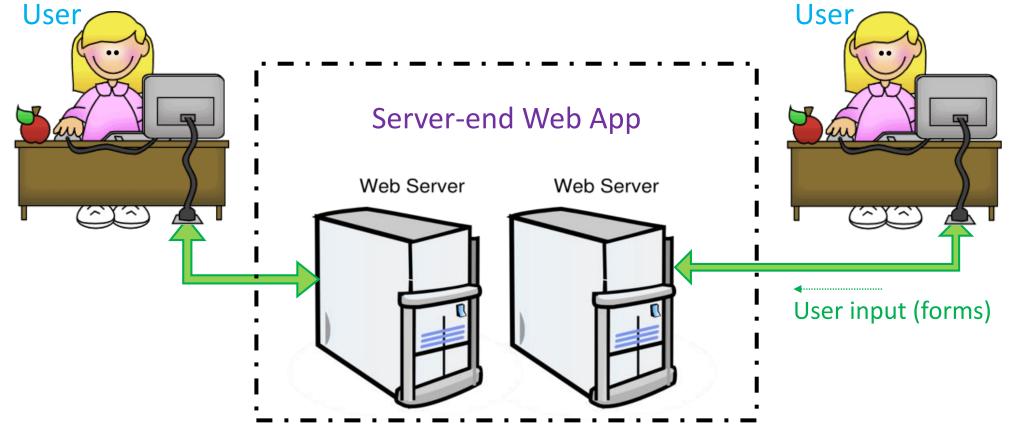


- k-HPA $\mathcal{A} = (Q, q_0, \delta, Acc)$ on alphabet Σ
 - States stratified into levels 0, 1, ..., k,
 - From a state at level *i*, on an input,
 - At most one transition goes to level *i*, all others go to higher levels.

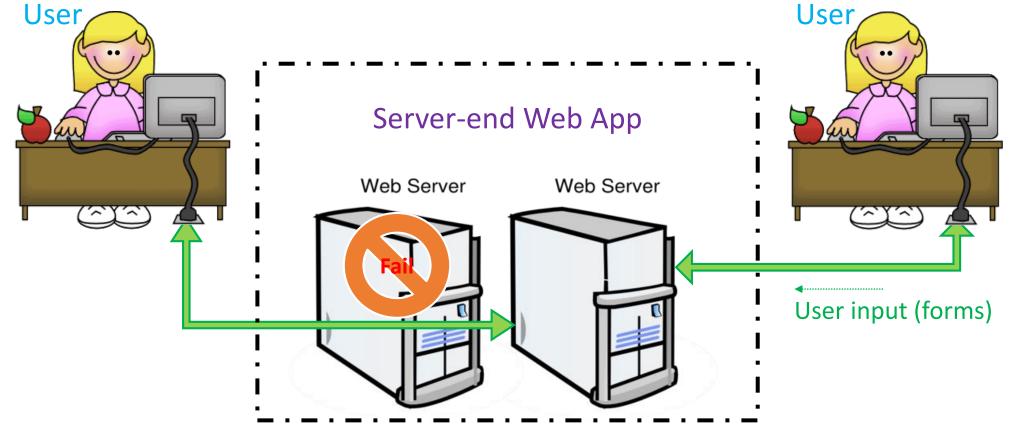


For 1-HPA, all transitions on Level 1 are deterministic with prob 1.

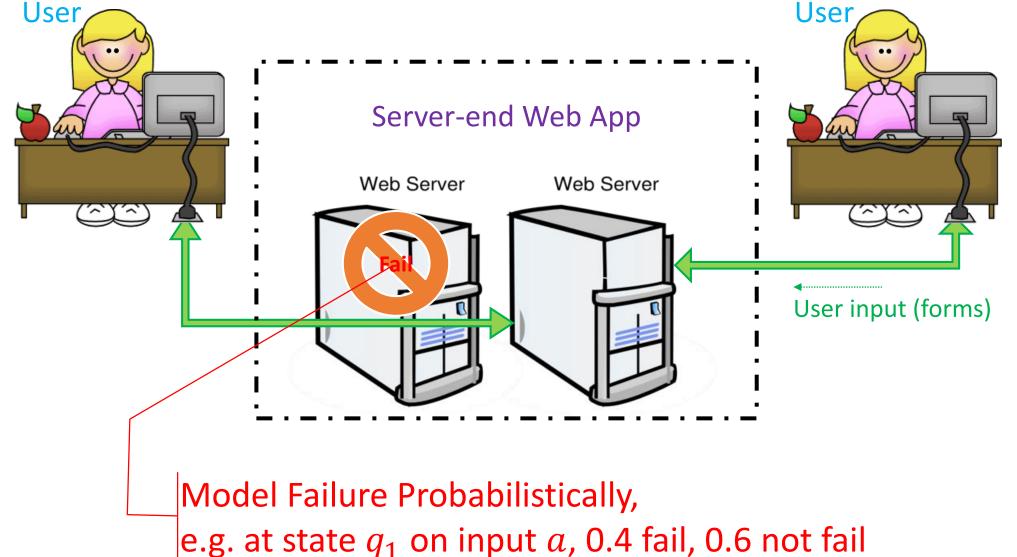
Failure-Prone Open System



Failure-Prone Open System



Failure-Prone Open System



Model Checking Failure-Prone Open System

Decide if an open concurrent system $(g_1 \parallel g_2)$ under failure specification $(g_{1f} \parallel g_2)$ satisfies an incorrectness property (g_{1p}) with low prob $\leq x$

Model Checking Failure-Prone Open System

Decide if an open concurrent system $(g_1 \parallel g_2)$ under failure specification $(g_{1f} \parallel g_2)$ satisfies an incorrectness property (g_{1p}) with low prob $\leq x$

Model Checking Failure-Prone Open System

Decide if an open concurrent system $(g_1 \parallel g_2)$ under failure specification $(g_{1f} \parallel g_2)$ satisfies an incorrectness property (g_{1p}) with low prob $\leq x$

```
\Leftrightarrow \text{Check if } L_{>x}(\mathcal{A}) \neq \emptyset
g_1 \parallel g_2 \qquad \Longrightarrow \qquad g_{1f} \parallel g_2 \qquad \Longrightarrow \qquad g_{1f} \parallel g_2 \parallel g_{1p}
= \mathcal{A}
```

Contributions

Consider 1-HPA,

• Expressiveness

• Accept non-regular languages.

Contributions

Consider 1-HPA,

Expressiveness

- Accept non-regular languages.
- Decidability

• Checking if $\begin{cases} L_{>x}(\mathcal{A}) \neq \emptyset \\ L_{\ge x}(\mathcal{A}) \neq \emptyset \text{ are all decidable in EXPTIME and are PSPACE-hard.} \\ L_{>x}(\mathcal{A}) = \Sigma^* \end{cases}$

• Results hold for PFA, PBA, and PMA.

Contributions

Consider 1-HPA,

- Expressiveness
 - Accept non-regular languages.
- Decidability

• Checking if $\begin{cases} L_{>x}(\mathcal{A}) \neq \emptyset \\ L_{\geq x}(\mathcal{A}) \neq \emptyset \text{ are all decidable in EXPTIME and are PSPACE-hard.} \\ L_{>x}(\mathcal{A}) = \Sigma^* \end{cases}$

1st decidability result for non-extreme

thresholds.

• Results hold for PFA, PBA, and PMA.

Contributions (Cont.)

Decidability

- Algorithms for 1-HPA
 - Backward Alg
 - Forward Alg (faster in practice)
- Tool: HPAMC an HPA Model Checker
- For a 2-HPA \mathcal{A} , checking if $L_{>x}(\mathcal{A}) \neq \emptyset$ is undecidable for x > 0.

Contributions (Cont.)

Decidability

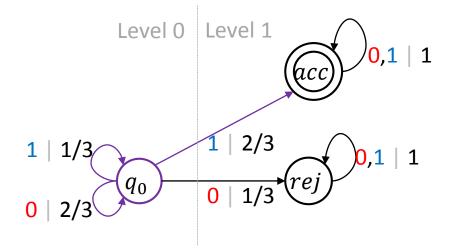
- Algorithms for 1-HPA
 - Backward Alg
 - Forward Alg (faster in practice)
- Tool: HPAMC an HPA Model Checker
- For a 2-HPA \mathcal{A} , checking if $L_{>x}(\mathcal{A}) \neq \emptyset$ is undecidable for x > 0.

Restricted Classes

• Integer Automata - $L_{>x}(\mathcal{A})$ is regular.

Expressiveness Results

• Consider the 1-HPA \mathcal{A} :



• Theorem: $L_{>\frac{1}{2}}(\mathcal{A})$ is not regular.

Proof

Level 0 Level 1 1 | 2/3 0,1 | 1 1 | 2/3 0,1 | 1 0 | 2/3 0 | 1/3 rej 0,1 | 1

- For $u \in \{0,1\}^*$, define $Val(u) = \frac{\frac{1}{2} \delta_u(q_0, Acc)}{\delta_u(q_0, q_0)}$,
 - Val(u) denotes the % of the prob remaining at level 0 that needs to move to Acc to reach $\frac{1}{2}$.
 - $Val(u0) = \frac{3}{2}Val(u); Val(u1) = 3Val(u) 2.$

Proof

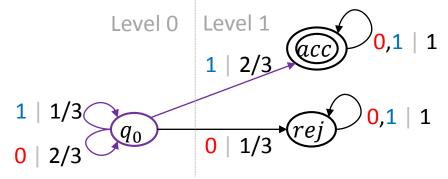
Level 0 Level 1 1 | 2/3 0,1 | 1 1 | 2/3 0,1 | 1 1 | 2/3 0,1 | 1 0 | 2/3 0 1/3 rej 0,1 | 1

- For $u \in \{0,1\}^*$, define $Val(u) = \frac{\frac{1}{2} \delta_u(q_0, Acc)}{\delta_u(q_0, q_0)}$,
 - Val(u) denotes the % of the prob remaining at level 0 that needs to move to Acc to reach $\frac{1}{2}$.

•
$$Val(u0) = \frac{3}{2}Val(u); Val(u1) = 3Val(u) - 2.$$

• $v \in \{0,1\}^* \cup \{0,1\}^{\omega}$ represents a number $bin(v) \in [0,1]$. e.g. $bin(011) = 0 + \frac{1}{2^2} + \frac{1}{2^3}$.

Proof (Cont.)



- Claim: $\beta \in \{0,1\}^{\omega}$ is ultimately periodic \Rightarrow $\mathbf{X}_{\beta} = \{ Val(\beta') | \beta' \text{ is a prefix of } \beta \}$ is finite.
- X_{β} is infinite $\Rightarrow \beta$ is aperiodic $\Rightarrow bin(\beta)$ is irrational.

Proof (Cont.)

Level 0 Level 1

$$1 \mid 2/3$$
 0,1 | 1
 $1 \mid 2/3$ 0,1 | 1
 $1 \mid 2/3$ 0,1 | 1
 $0 \mid 2/3$ 0 | 1/3 rej 0,1 | 1

- Claim: $\beta \in \{0,1\}^{\omega}$ is ultimately periodic \Rightarrow $\mathbf{X}_{\beta} = \{ Val(\beta') | \beta' \text{ is a prefix of } \beta \}$ is finite.
- X_{β} is infinite $\Rightarrow \beta$ is aperiodic $\Rightarrow bin(\beta)$ is irrational.
- We exhibit a β s.t. X_{β} is infinite,

s.t.
$$L_{>\frac{1}{2}}(\mathcal{A}) = \{u \in \{0,1\}^* | bin(u) > bin(\beta)\}.$$

• Using Rabin's result, $L_{>\frac{1}{2}}(\mathcal{A})$ is non-regular.

Proof (Cont.)

Level 0 Level 1

$$1 \mid 2/3$$
 0,1 | 1
 $1 \mid 2/3$ 0,1 | 1
 $1 \mid 2/3$ 0,1 | 1
 $0 \mid 2/3$ 0 | 1/3 rej 0,1 | 1

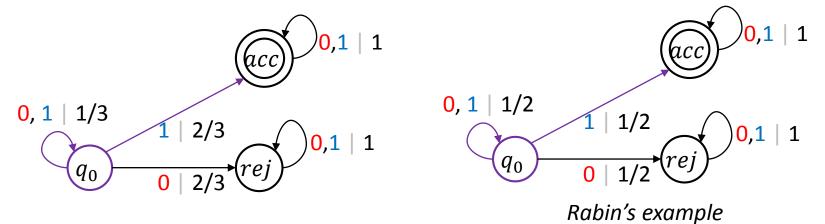
- $\beta = \lim_{i \to \infty} \beta_i$, and
- β_i is constructed as below:

•
$$\beta_0$$
 is the empty string, thus $Val(\beta_0) = \frac{1}{2}$;
• $\beta_{i+1} = \begin{cases} \beta_i 0 & if Val(\beta_i) < \frac{2}{3} \\ \beta_i 1 & else \end{cases}$

Integer Automata (IA)

• A 1-HPA $\mathcal{A} = (Q, q_0, \delta, Acc)$ on Σ is an IA, if

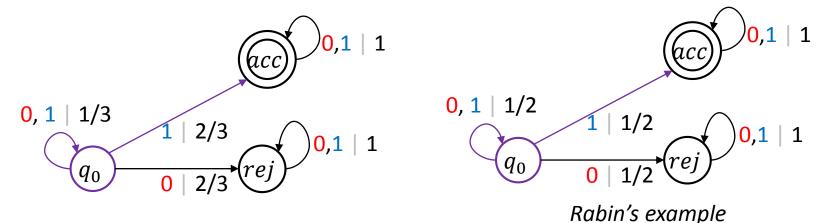
• $\forall q \in Q_0, a \in \Sigma, r \in Q_1, \delta_a(q, r)$ is an integer multiple of $\delta_a(q, Q_0)$.



Integer Automata (IA)

• A 1-HPA $\mathcal{A} = (Q, q_0, \delta, Acc)$ on Σ is an IA, if

• $\forall q \in Q_0, a \in \Sigma, r \in Q_1, \delta_a(q, r)$ is an integer multiple of $\delta_a(q, Q_0)$.



• Theorem:

 $L_{>x}(\mathcal{A})$ is regular for IA \mathcal{A} and rational x.

Decidability Results for 1-HPA

Given 1-HPA $\mathcal{A} = (Q, q_0, \delta, Acc)$ and Σ ,

- let |Q| = n, $Q = Q_0 \cup Q_1$, where Q_0 and Q_1 denote level 0 and 1 states.
- A witness set W is a subset of Q with at most one state in Q_0 .
 - q_W denotes the Q_0 state of W if exists.
 - W is "good" ~ if $\exists v \in \Sigma^*$ s.t. v is accepted with prob 1 from all $q \in W \cap Q_1$.

Decidability Results for 1-HPA

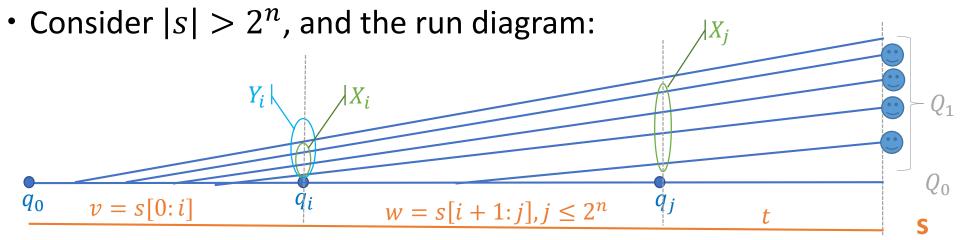
Given 1-HPA $\mathcal{A} = (Q, q_0, \delta, Acc)$ and Σ ,

- let |Q| = n, $Q = Q_0 \cup Q_1$, where Q_0 and Q_1 denote level 0 and 1 states.
- A witness set W is a subset of Q with at most one state in Q_0 .
 - q_W denotes the Q_0 state of W if exists.
 - W is "good" ~ if $\exists v \in \Sigma^*$ s.t. v is accepted with prob 1 from all $q \in W \cap Q_1$.
- Theorem: $L_{>x}(\mathcal{A}) \neq \emptyset$ iff

 $\exists u, |u| \leq 4rn8^n$ and a good witness set $H, \delta_u(q_0, H) > x$.

$\mathsf{Proof}\,(\Rightarrow)$

• Assume $L_{>x}(\mathcal{A}) \neq \emptyset$, s is the shortest string in it.



- s = vwt as shown above, and $X_i = X_j$ and $q_i = q_j$.
- $\cdot \frac{\delta_w(q_i, X_j)}{\delta_w(q_i, Q_1)} > \delta_t(q_j, Acc).$
- By repeating w sufficient number of times (m), we get desired $u = vw^m$.

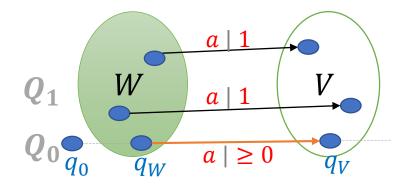
Decidability Results (Cont.)

- Theorem: Determining $L_{>x}(\mathcal{A}) \neq \emptyset$ is in EXPTIME.
- Proof : Use last theorem and dynamic programming approaches.
 - Backward Algorithm (simpler)
 - Forward Algorithm (faster)

Backward Algorithm

- For $i = 1, ..., 4rn8^n$ and for each good witness set W,
- Prob(W, i) the max prob of getting accepted from q_W using an input of length at most i.

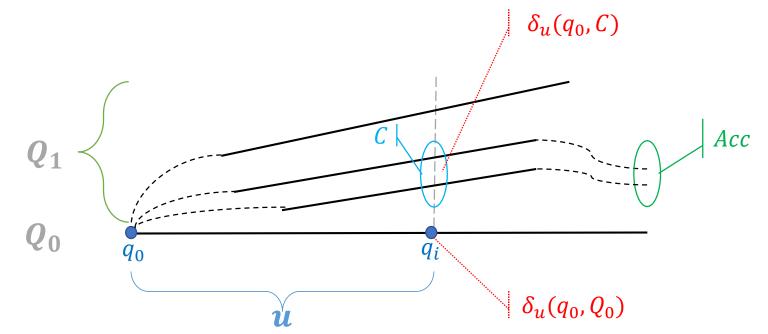
$$\begin{aligned} Prob(W, 1) &= \max\{\delta_a(q_W, Acc)\}; \\ \swarrow Prob(W, i + 1) &= \max\{ \\ \{Prob(W, i)\}, \\ \{\delta_a(q_W, q_V) \times Prob(V, i) + \delta_a(q_W, V \cap Q_1) \\ post(W \cap Q_1, a) \subseteq V\} \}. \end{aligned}$$



• Check if $Prob(\{q_0\}, i) > x$.

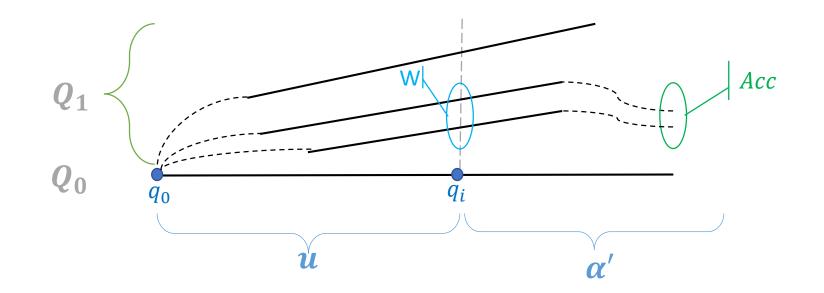
Forward Algorithm

• For $C \subseteq Q_1$ of HPA $\mathcal{A}, x \in (0,1), u \in \Sigma^*$, • $\mathbf{val}(\mathbf{C}, \mathbf{x}, \mathbf{u}) = \frac{\mathbf{x} - \delta_u(q_0, C)}{\delta_u(q_0, Q_0)}$ is the fraction of $\delta_u(q_0, Q_0)$ needed in C to exceed x.



Forward Algorithm

• Word α is accepted with prob> x, iff $\alpha = u\alpha'$ and \exists a good witness set W s.t. val(W, x, u) < 0.



Forward Algorithm (cont.)

- For each good witness set W and $i \ge 0$, $\min val(W, i)$ is
- the min of *val* over all strings of length at most *i*;
- $\min val(W, i) = \min \{val(W \cap Q_1, x, u) \mid |u| \le i\}.$

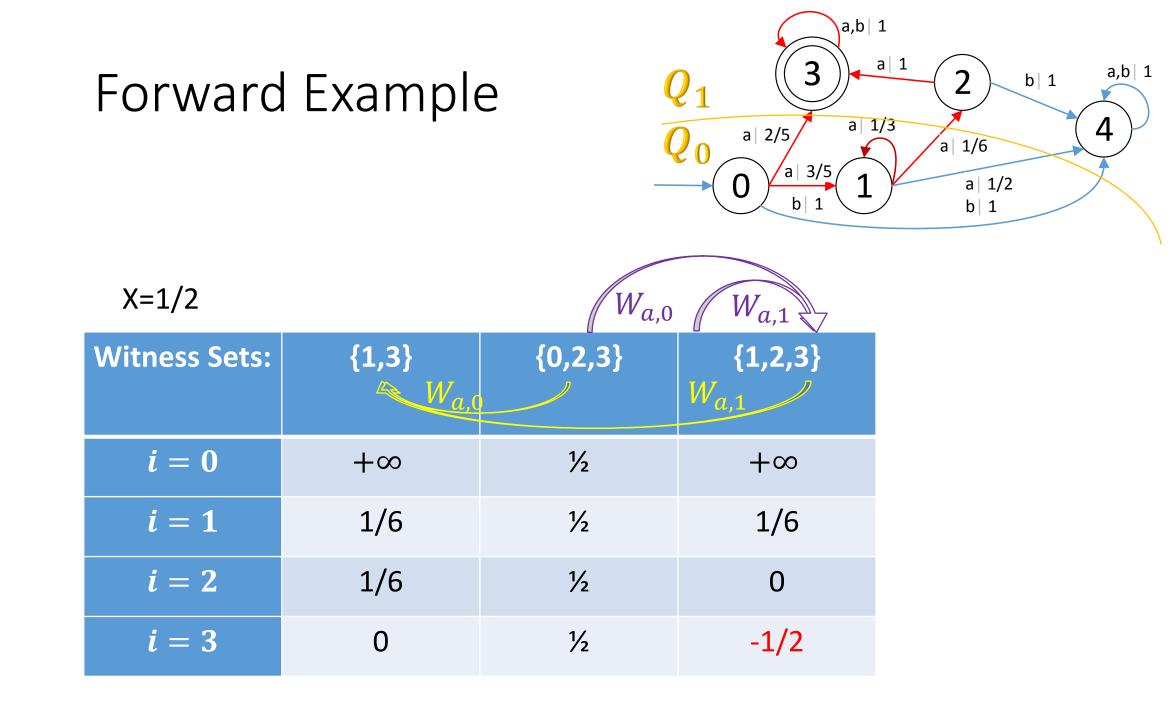
Forward Algorithm (cont.)

- For each good witness set W and $i \ge 0$, $\min val(W, i)$ is
- the min of *val* over all strings of length at most *i*;
- $\min val(W, i) = \min \{val(W \cap Q_1, x, u) \mid |u| \le i\}.$
- For increasing *i* and each *W*, compute **minval**(*W*, *i*) incrementally.

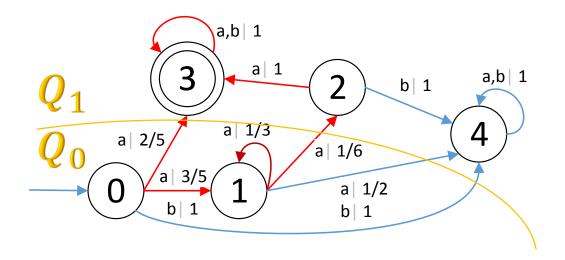
• minval(W,0) =
$$\begin{cases} x & if \ q_0 \in W \\ +\infty & else \end{cases}$$

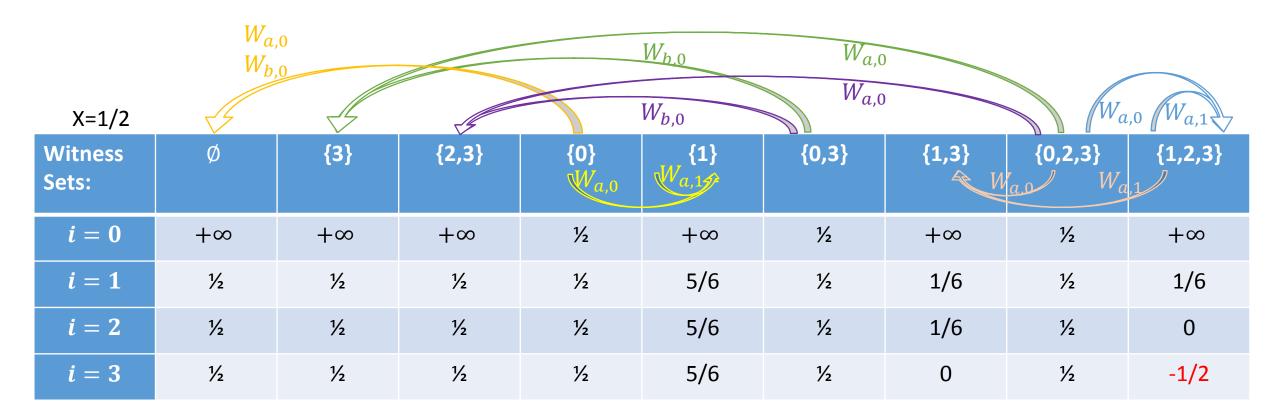
Forward Algorithm (cont..)

For
$$i > 0, a \in \Sigma, q \in Q_0$$
,
 $W_{a,q} = (\operatorname{pre}(W, a) \cap Q_1) \cup \{q\}$ for W .
minval $(W, i) = \min \{\min val(W, i - 1), \{\frac{\min val(W_{a,q}, i - 1) - \delta_a(q, W \cap Q_1)}{\delta_a(q, q_W)} | \delta_a(q, q_W) > 0 \}\}$



Forward Example





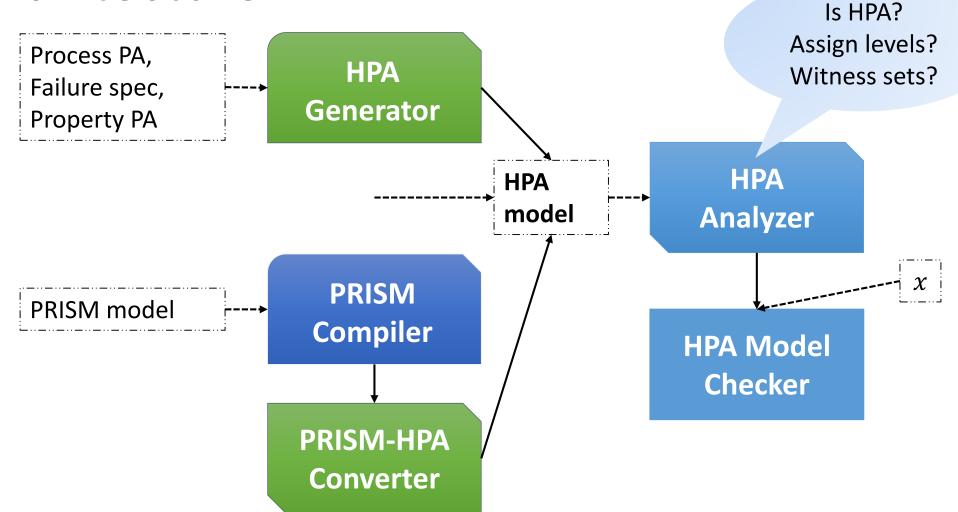
FWD vs. BKD

- Let n = |states|, m = |transitions|, w is # of good witness sets, and $s = |\Sigma|, L_f$ and L_b are the # of iterations before FWD and BKD algs terminate respectively.
- Complexity
 - FWD $O\left(\left(\mathbf{mn} + L_f m^2\right)\mathbf{w}\right)$ vs. BKD $O((L_b \mathbf{m} + \mathbf{m} + n)\mathbf{sw}^2)$
 - $L_f \le w = O(2^n), L_b \le 4rn8^n$.
 - FWD is faster than BKD in practice.

FWD vs. BKD

Web Application	\boldsymbol{n}	m	s	\boldsymbol{w}	Result	(CPU Time in ms)			L_{f}	$ L_b $
						Forward	Backward	BKD/FWD		
eBay Auction	19	248	13	60	empty	16	140	8.75	4	2
					non-empty	0	125	N/A	2	2
On-line Shopping 1 86	86	1/72	17	342	empty	78	4009	51.40	16	15
	80	1472			non-empty	47	4165	88.62	13	14
On-line Shopping 2 8	80	1365	17	341	empty	47	4571	97.26	15	15
					non-empty	31	4228	136.39	13	14
On-line Shopping 3 8	87	1489	17	2051	empty	328	338273	1031.32	14	10
	0/				non-empty	140	321362	2295.44	5	8
Medium HPA 19	101	1200	22	3402	empty	391	491719	1257.59	8	10
	191	4209			non-empty	172	502984	2924.33	5	8
Larger HPA	399	797	12	3874	empty	47	210734	4483.70	1	5
					non-empty	156	221641	1420.78	2	7

HPAMC: an HPA Model Checker Architecture



HPAMC: an HPA Model Checker

٩	HPA V	erifica	ation Too	ol	_ '		×
HPA Analysis and Verifica	tion HPA Gene	eration	HPA Generation	from P	RISM outpu	ut	
Process File:							
Which session may fail? Session 1							
Which session has priority	Session 2	-					
Interleaving execution after	Interleaving execution after failure?						
Failed Input	Failed Input Failure Pr.			al)			
			1 Add Row				
Property File:							
Output Folder:							

- HPA Generation
- Features
 - PA model specification.
 - PA model abstraction by synthesizing system, failure specification, and incorrectness property.

HPAMC: an HPA Model Checker

٤	HPA Verific	ation Tool	_ □	×
HPA Analysis and Verification	HPA Generation	HPA Generation from	PRISM output	
Generate HPA from PRISM outpu	ıt.			
[Required] .tra(rows) File:				
]	
[Recommended] .lab File:			7	
[Optional] .sta File:			1	
]	
		Reset input files.		
Generate HPA!				
Output PA to FAT	Outpu	t PA to plain file]	

• HPA Generation from PRISM

• Features

- Compatible with popular model checkers like PRISM.
- Obtain PA from MDP.

HPAMC: an HPA Model Checker

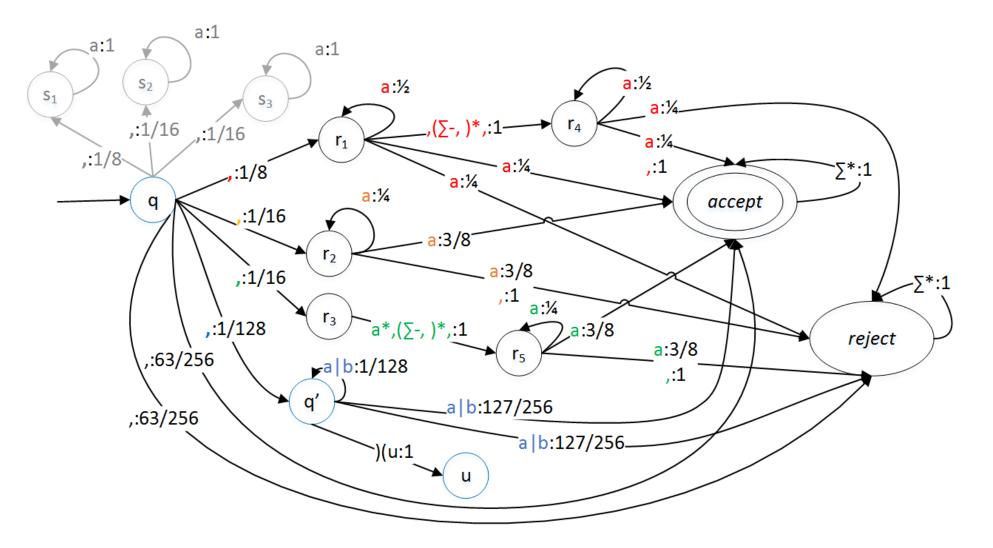
🕌 HPA Verification Tool 🚽 🗖 🗙					
HPA Analysis and Verification	IPA Generation HPA Generation from PRISM output				
Load HPA from	O Web URL				
Load HPA:					
Output PA to FAT	Output PA to plain file				
For decidability:					
Threshold probability:	0.5				
Run Backward Alg.	Run Forward Alg.				
For robustness:					
Robustness precision:	0.001				
Decide Robustness.					

- HPA Analysis and Verification
- Features
 - HPA-based verification of PA models.
 - Targeting decidability and robustness problems.

Undecidability Results for 2-HPA

- Theorem: Given a 2-HPA \mathcal{A} , a rational threshold $x \in [0, 1]$, the problem of determining if $L_{>x}(\mathcal{A}) \neq \emptyset$ is undecidable.
- Proof: By construction.
 - Reduce the halting problem for counter automata.

Undecidability Results for 2-HPA



Conclusions

- For the 1st time, we identified a decidable and expressive class of PA.
 - The results hold for PFA, PBA, and PMA; also for $>, \geq$.
- Model checker for open concurrent probabilistic systems HPAMC.
- Problem of checking $L_{>\frac{1}{2}}(\mathcal{A}) \neq \emptyset$ is PSPACE-hard.
- Problem of checking $L_{>x}(\mathcal{A}) \neq \emptyset$ is undecidable for 2-HPA.

Future Work

- Identify subclasses of PA whose non-emptiness can be checked in poly-time.
- Extend to infinite acceptance and liveness property.
- Support temporal logic property.
- Tool refinement.

Thanks! Questions?

Automata Theoretic Approach for Model Checking Open Probabilistic Systems A. Prasad Sistla

Joint work with Yue Ben, Rohit Chadha, Mahesh Viswanathan

Decidability Results (Cont.)

- Theorem: Determining $L_{>x}(\mathcal{A}) \neq \emptyset$ is in EXPTIME.
- Proof : Use last theorem and a dynamic programming approach.
 - Let \mathcal{X} be the set of witness sets U such that $U \cap Q_0 \neq \emptyset$ and $U \cap Q_1$ is a good set, \mathcal{Y} be the set of good witness sets; $\mathcal{Y} \subseteq \mathcal{X}$.
- $\begin{array}{l} \bullet \operatorname{Prob}(U,1) = \max\{\delta_a(q_U,W) | a \in \Sigma, W \in \mathcal{Y}, \operatorname{post}(U \cap Q_1,a) \subseteq W\}; \\ \bullet \operatorname{Prob}(U,i+1) = \max\left(\begin{array}{l} \{\delta_a(q_U,q_V)\operatorname{Prob}(V,i) + \delta_a(q_U,V \cap Q_1) | \\ a \in \Sigma, V \in \mathcal{X}, \operatorname{post}(U \cap Q_1,a) \subseteq V\} \end{array} \right). \end{array}$

• Check if $Prob(\{q_0\}, .) > x$.

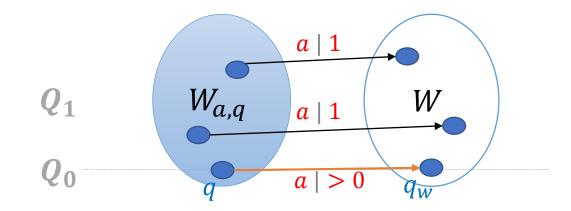
-> Backward Alg

- For i > 0, $a \in \Sigma$, $q \in Q_0$, $W_{a,q} = (\operatorname{pre}(W, a) \cap Q_1) \cup \{q\}$ for each W.
- If $W \cap Q_0 \neq \emptyset$, $\mathbf{mval}(W, \mathbf{i}) = \min \{ \operatorname{mval}(W, \mathbf{i} 1), \{ \frac{\operatorname{mval}(W_{a,q}, \mathbf{i} 1) \delta_a(q, W \cap Q_1)}{\delta_a(q, q_W)} | \delta_a(q, q_W) > 0 \} \}.$
- If $W \cap Q_0 = \emptyset$, $\mathbf{mval}(W, \mathbf{i}) = \begin{cases} -\infty & \text{if } \exists W_{a,q} \text{ of } W \text{ s.t. } \mathbf{mval}(W_{a,q}, \mathbf{i} 1) < \delta_a(q, W \cap Q_1) \\ \mathbf{mval}(W, \mathbf{i} 1) & else \end{cases}$

Forward Algorithm (cont..)

For i > 0, $a \in \Sigma$, $q \in Q_0$, $W_{a,q} = (\operatorname{pre}(W, a) \cap Q_1) \cup \{q\}$ for each W.

If $W \cap Q_0 \neq \emptyset$, $\mathbf{mval}(W, \mathbf{i}) = \min \{ \operatorname{mval}(W, \mathbf{i} - 1), \\ \left\{ \frac{\operatorname{mval}(W_{a,q}, \mathbf{i} - 1) - \delta_a(q, W \cap Q_1)}{\delta_a(q, q_W)} \middle| \delta_a(q, q_W) > 0 \right\} \}$



Forward Algorithm (cont...)

For i > 0, $a \in \Sigma$, $q \in Q_0$, $W_{a,q} = (\operatorname{pre}(W, a) \cap Q_1) \cup \{q\}$ for each W.

If
$$W \cap Q_0 = \emptyset$$
, $\mathbf{mval}(W, \mathbf{i}) = \begin{cases} -\infty & \text{if } \exists W_{a,q} \text{ of } W \text{ s. t. } \mathbf{mval}(W_{a,q}, \mathbf{i} - 1) < \delta_a(q, W \cap Q_1) \\ \mathbf{mval}(W, \mathbf{i} - 1) & else \end{cases}$

